
Specification

CodeCover
Glass Box Testing Tool

Student Project A “OST-WeST”
University of Stuttgart

Version: 1.1-dev

Last changed on May 28, 2008 (SVN Revision 23)

CodeCover- Specification 2

Version History

Date Version Author Modifications

11.01.2007 0.1 Stefan Franke - Chapter files and master document file
16.01.2007 0.2 Stefan Franke - ui: Eclipse Plug-in and images within
17.01.2007 0.3 Michael Starzmann

Christoph Müller
- Headwords following the corresponding
chapter in the analysis-notes
- nr: Keywords taken over by the analysis
notes
- fr: The foreword for the functional re-
quirements

18.01.2007 0.4 Stefan Franke - ui: Rewrite source code highlighting
- Reorder chapters
- Rename some sections
- ui: Added source code highlighting for
COBOL

19.01.2007 0.5 Christoph Müller - Document structure changed
- fr: Use case pictures imported
- fr: Foreword, fr: actors, fr: general ar-
rangements

20.01.2007 0.6 Johannes Langauf
Christoph Müller

- nf: Expand some keywords to complete
sentences
- nf: Find new NFRs
- fr: Configuration
- fr: Use case description
- fr: Language support

21.01.2007 0.7 Christoph Müller
Stefan Franke

- fr: Use case description
- ui: Session view, Coverage view and
Launching

23.01.2007 0.8 Christoph Müller
Stefan Franke
Michael Starzmann

- Correction after specification meeting
- fr: Use case description of measure cov-
erage
- fr: General functional requirements
- fr: Reports
- ui: Configuration dialogs

24.01.2007 0.9 Michael Starzmann
Christoph Müller

- in: Introduction
- fr: Use case description
- fr: Coverage Criteria

25.01.2007 0.10 Michael Starzmann
Stefan Franke

- ui: Package and file selection to ... states
- fr: Coverage measurement improved
- in: Introduction

CodeCover- Specification 3

Date Version Author Modifications

26.01.2007 0.11 Christoph Müller
Stefan Franke

- Correction after specification meeting
- fr: New use case instrument instru-
mentable items
- ui: Configuration sections
- ui: Source code highlighting

27.01.2007 0.12 Christoph Müller
Stefan Franke
Michael Starzmann

- fr: Use case description of administrate
sessions
- ui: Instrumentation subsection
- ui: Solved todos
- ui: first draft for the Batch interface
- fr: Release, folders, files

28.01.2007 0.13 Christoph Müller
Stefan Franke
Johannes Langauf

- fr: Batch interface
- ui,fr: Correction after internal review
- nr: improve and fill out most non-
functional requirements

29.01.2007 0.14 Christoph Müller - fr: Solve todos, use case diagrams, folder
structure
- Correction after QA meeting
- small spell check

30.01.2007 0.15 Christoph Müller
Stefan Franke
Johannes Langauf

- fr: New use cases: analyse coverage log,
export session
- ui: New Context menu
- ui: Import, Export, Report
- ui: Small adaption at figures
- nf: Correction after specification review
- nf: Extensibility, performance require-
ments, program examples

31.01.2007 0.16 Christoph Müller - Correction after Igor’s big bang

31.01.2007 1.0 Igor Podolskiy Declaring version 1.0, ready for review
08.02.2007 1.1-dev-1 Stefan Franke

Michael Starzmann
- Correction after specification review

09.02.2007 1.1-dev-2 Christoph Müller - Correction after specification review
10.02.2007 1.1-dev-3 Christoph Müller - Correction after specification review:

Bugs 47, 90, 52, 57, 56, 58, 60, 62, 63, 64,
65, 39, 40, 41, 42, 44, 46, 50, 51, 52, 54, 34

11.02.2007 1.1-dev-4 Johannes Langauf
Christoph Müller
Stefan Franke

- Correction after specification review:
Bugs 48, 35, 32, 91, 16

12.02.2007 1.1-dev-5 Johannes Langauf
Christoph Müller

- Correction after specification review:
Bug 22
- new batch commands

CodeCover- Specification 4

Date Version Author Modifications

13.02.2007 1.1-dev-6 Stefan Franke
Christoph Müller

- moved the glossary to specification docu-
ment
- added links to glossary entries
- Bug 7: Work flow
- Bugs 6, 21, 28, 88, 89, 91

14.02.2007 1.1-dev-7 Stefan Franke
Christoph Müller
Michael Starzmann

- Bug 45

16.02.2007 1.1-dev-8 Stefan Franke
Christoph Müller

- Bug 45

11.05.2007 1.1-dev-9 Stefan Franke
Christoph Müller

- Bugs 98, 99, 100

15.06.2007 1.1-dev-10 Christoph Müller - fr: 2.9 JUnit integration
17.06.2007 1.1-dev-11 Stefan Franke - ui: 3.13 Boolean Analyzer
18.06.2007 1.1-dev-12 Christoph Müller - fr: 2.7.6 coverage log file name

- fr: 2.4.6 instrument supports a charset
- fr: 2.4.7 analyze supports a charset
- fr: 2.4.5 Instrumenter-info

19.06.2007 1.1-dev-13 Christoph Müller - fr: 2.4.6 instrument has --copy-
uninstrumented

29.06.2007 1.1-dev-14 Christoph Müller - fr: 2.4.6 instrument has include, exclude
19.09.2007 1.1-dev-15 Johannes Langauf - ui: 3.14 Hot-Path: make outstanding de-

cisions, update for configureable colors
- fr: remove PDF-Report support

31.10.2007 1.1-dev-16 Tilmann Scheller general update of specification
28.05.2008 1.1-dev-17 Christoph Müller - fr: return and break are basic state-

ments too

CodeCover- Specification 5

Contents

1 Introduction 7
1.1 Project overview . 7
1.2 About this document . 8
1.3 Addressed audience . 8
1.4 Conventions for this document . 9
1.5 Authors . 9

2 Functional requirements 10
2.1 Test sessions and test cases . 10
2.2 Actors . 11
2.3 Use case description . 12
2.4 Batch interface . 40
2.5 Configuration . 52
2.6 Report . 54
2.7 Instrumentation, types of coverage and measurement 57
2.8 Language support . 62
2.9 JUnit integration . 62
2.10 ANT integration . 64
2.11 Live Test Case Notification . 77

3 Graphical User Interface 80
3.1 Package and file states . 80
3.2 Instrumentation . 81
3.3 Launching . 81
3.4 Coverage view . 82
3.5 Test sessions view . 83
3.6 Import . 85
3.7 Export . 88
3.8 Source code highlighting . 89
3.9 Preferences dialog . 94
3.10 Project properties dialog . 96
3.11 Correlation Matrix . 97
3.12 Live Notification View . 99
3.13 Boolean Analyzer . 100
3.14 Hot-Path . 101

4 Non-functional requirements 102
4.1 Technologies and development environment 102
4.2 Requirements to the working environment 102
4.3 Quantity requirements . 103
4.4 Performance requirements . 105

CodeCover- Specification 6

4.5 Availability . 106
4.6 Security . 106
4.7 Robustness and failure behavior . 106
4.8 Usability . 106
4.9 Portability . 107
4.10 Maintainability . 107
4.11 Extensibility . 107

List of Figures 109

Glossary 110

CodeCover- Specification 7

1 Introduction

1.1 Project overview

CodeCover stands for glass box testing tool. It measures the code coverage↗ of a

running program and will be as independent as possible of the programming language

of the covered program.

Characteristics of CodeCover :

• CodeCover runs at least on Linux and Windows,

• CodeCover can measure code coverage for programs written in Java and COBOL.

• CodeCover is extensible to measure code coverage for further programming lan-

guages as well.

• CodeCover measures multiple code coverage criteria and is extensible to further

ones.

• CodeCover provides functionality to create reports of the measured code coverage

in HTML↗-files.

• CodeCover is an Eclipse1 plug-in with a graphical user interface, but also provides

a command line interface for use without Eclipse.

To understand the functional requirements specified in this document, a visual overview

of the work flow is shown in figure 1.1.

Several steps and intermediate results exist for the whole of the coverage measurement

process. The ellipses stand for processing, the rectangles stand for intermediate results

or final results.

The process starts with the instrumentation↗ of code files↗. A MAST↗ is produced in

addition to the instrumented code files. The MAST↗ is stored with the code files↗ in

a session container↗. After the compilation and execution of all the instrumented code

files of the SUT↗, a coverage log↗ with the raw coverage results is produced.

During the analysis phase, the coverage log is processed to obtain a test session↗ with

test cases↗. They contain all the processed coverage results. These information are

1http://www.eclipse.org/

http://www.eclipse.org/

CodeCover- Specification 8

Figure 1.1: Work flow of the software

added to the session container↗.

Using the information of the MAST↗ and the test sessions↗, CodeCover can generate a

HTML↗ report.

1.2 About this document

This document specifies all requirements the software has to fulfill and all interfaces to

users or other programs. The design of the software will be written based upon this

document. This document is the common ground between the customer and the devel-

opers↗. Therefore, it’s important that both, customers and developers, pay attention to

the quality of this document and keep it current.

1.3 Addressed audience

This document is addressed to

• the customer who ordered the software

• the project manager controlling the work

• the designers writing the software design

CodeCover- Specification 9

• the quality assurance division creating test cases↗ for the software

• the developers implementing the design

• future developers maintaining and extending the software

• interested users of the software

• students of upcoming student projects

1.4 Conventions for this document

A glossary is shipped together with this specification↗. It contains basic definitions

and allows clear statements in this document because it prevents ambiguity. Therefore

words mentioned in the glossary are used often and are not explicitly defined in this

specification but in the glossary.

The term “software” is used for CodeCover . Code examples and file names are written

in the typewriter style. Labels and names of graphical user interface components are

written in small caps. If necessary, examples are used and placeholders are enclosed

by percentage signs: %placeholder%. Furthermore, glossary entries are marked with the

symbol ↗, but only at the first occurrence in a section.

1.5 Authors

In the following table the contact persons per section are named.

Section Author E-mail

Introduction Michael Starzmann starzmml@studi.informatik.uni-stuttgart.de

Functional require-

ments (2.1 – 2.5)

Christoph Müller muellecr@studi.informatik.uni-stuttgart.de

Functional require-

ments (2.6 – 2.8)

Michael Starzmann starzmml@studi.informatik.uni-stuttgart.de

Graphical user inter-

face

Stefan Franke frankesn@studi.informatik.uni-stuttgart.de

Non-functional

requirements

Johannes Langauf langaujs@studi.informatik.uni-stuttgart.de

CodeCover- Specification 10

2 Functional requirements

2.1 Test sessions and test cases

The software produces test sessions↗ which contain test cases↗. A session container↗

stores a number of test sessions which each refer to a code base↗. Each test session has

to have a unique name within a session container. It is not specified how the session

containers are stored (XML, internal database, ...) but it should be decided in the

software design phase.

Test cases are used to subdivide a test session. Test cases contain the results of the

coverage measurement over a period of time during the execution of the SUT↗. This

can either be the whole of the SUT run, in this case the test session contains only a

single test case, or a smaller period of time.

The end of a test case should be explicitly declared, so that it is clear where a test case

begins and ends.

The test cases do not overlap. In consequence, the start of a new test case enforces the

end of the previous test case. A test case in a test session is uniquely defined by its (test

case’s) name. If a test case with the same name is started several times, all respective

results of the coverage measurement are associated with the same test case.

Test cases will be defined by JUnit or by the user during the SUT execution using a

dialog box.

In addition to that, the software provides an integrated test case notification mechanism.

To use the test case notification mechanism in Java, a small JAR file containing a

Protocol class can be added to the SUT’s class path. This class has the following

methods the user can call anywhere in the code of the SUT to create test cases:

//defining the start of a named and described test case:

public static void startTestCase(String name, String comment)

//Alternatively defining the start of named test case:

public static void startTestCase(String name)

//Defining the end of the last test case:

public static void endTestCase(String name)

CodeCover- Specification 11

//Alternatively defining the end of the last without using the name:

public static void endTestCase()

The name of the Protocol class and the names of the methods are not normative. They

are examples used to describe the mechanism and can be adapted by the software design

at will.

If there is not a valid Protocol call in the code files of the SUT, the software will create

one anonymous test case with the name unnamed test case for the full test session

results. But if there are defined test cases, only the coverage occurring during test cases

is measured.

Test sessions and test cases are related to a specific version of the code files, the code

base. The software can only highlight the results of a coverage run of a code file (see

section 3.8) if the code file is equal to the code file used for the instrumentation.

Test sessions depending on the same code base can be merged. This means that all test

cases contained in two or more different test sessions are copied into a new test session.

If test cases have the same name, they are renamed to test case name (session name

1), test case name (session name 2). Also, two or more test cases of one test session

can be merged to a new test case.

2.2 Actors

To describe the use cases in the following section 2.3, actors must be defined. These

actors are the users of the software. It is assumed that these users are software develop-

ers↗ or testers and thus have experience with software tools. The actor model is shown

in figure 2.1.

As the software partly integrates with the Eclipse IDE, one type of actor is the Eclipse

user. He has experience in using Eclipse and has worked with plug-ins before. He wants

the plug-in interface to be intuitive and expects a similar behavior he is used to from

other plug-ins. He is accustomed to control every software feature out of Eclipse and

does not want to have to open external programs.

The shell user is the user who controls the software using the system shell. He has used

Windows or Linux shells before as well as other command line programs and is used to

their respective characteristics. He wants a well-written reference manual and on line

CodeCover- Specification 12

generic user

shell user

Eclipse user

Figure 2.1: Actors

help with subcommand and option listing.

In the following use case models often a generic user is used, because Eclipse and shell

users participate in the same use cases. In these cases, both are generalized to the generic

user.

2.3 Use case description

2.3.1 Preface

In the rest of this section the functional specification↗ is described. To clarify the

functional requirements, a use case analysis is used. There is no common understanding

of the purpose of use cases. On the one hand, they are used to show the key functions of

the specified software – the key functions a customer wants to be implemented. On the

other hand, they are used to describe the sequence of actions clearly. For the following

use case description both aspects are needed.

For the description of the key functions, key use cases are applied. They summarize

smaller use cases and allow an overview. These use cases are defined in section 2.3.3.

Besides the key use cases, standard use cases are employed to describe the functions in

detail.

CodeCover- Specification 13

2.3.2 Predefinitions

2.3.2.1 Use case descriptions

Each standard use case comes with a use case description. The use case description

consists of the following items:

• Actor

• Preconditions

• Regular sequence

• Other sequences

• Postconditions

• Possible exceptions

The actor is the person performing the use case. The actors are described in section 2.2.

The preconditions describe the circumstances needed to start the use case. This can be

a state of the software, an open dialog box or the successful termination of another use

case.

The regular sequence is the description of the normal steps of the use case. It states

how the actor interacts with the software, which input is made and which feedback is

returned by the software. It is assumed that the sequence is successfully finished without

errors.

If there are short cuts or small modifications possible for the regular sequence, they are

described in other sequences too. Also the cancellation of a use case belongs to this

section.

The postconditions describe the state of the software and – if affected – data after

the regular sequence is successfully finished. If there are other possible sequences, the

postconditions describe the state of the software after each of these sequences.

The possible exceptions are used to specify sequences where errors occur. They can

be caused by mistakes of the actor, file system errors or other states which cause the

sequences to be aborted.

Beginning with the section 2.3.2.2 general assumptions are described that hold true for

every use case. An explicit statement↗ in the use case description can override these

CodeCover- Specification 14

assumptions for a particular use case.

2.3.2.2 General preconditions

Considering the Eclipse user, Eclipse must be started. The plug-in must be installed

correctly and must not be disabled. A Eclipse project↗ must be opened.

2.3.2.3 General other sequences

For the use cases of the Eclipse user it is assumed, that every use case which includes

interaction with a dialog, can be stopped immediately by clicking the Cancel button in

the dialog.

There are often several ways to open a dialog or to execute a command in Eclipse. In

most cases only one way is described for simplicity. Some are listed here, because they

are explicitly used:

• the Eclipse dialog Properties can be opened using the context menu of the dialog

or the menu Project

• the context menu of a code file↗ can be opened in the Package Explorer and

in the Navigator

• the context menu can be opened using a right click or the Context Menu Key on

the keyboard

2.3.2.4 General postconditions

If it is stated that something – e.g. a test session↗ – is saved the changes are stored

persistently in the related session container↗.

2.3.2.5 General possible exceptions

The general behavior of the software in abnormal situations is described in the sec-

tion 4.7.

If a session container could not be updated or created – e.g. due to lack of access

permissions or low disk space – an error message is shown to inform the actor.

CodeCover- Specification 15

2.3.3 Key use cases

Eclipse user

measure coverage

generate report

administrate test sessions

shell user

show coverage

configure software

generic user

Figure 2.2: Key use cases

This diagram shows the key use cases of the software. As introduced in section 2.2, there

is an Eclipse user and a shell user. Both are specialized from the generic user.

The key use cases summarize a block of functionality and can be subdivided into smaller

standard use cases. These are:

• Measure coverage (see section 2.3.4)

• Show coverage (see section 2.3.5)

• Administrate test sessions (see section 2.3.6)

• Generate report (see section 2.3.7)

• Configure software (see section 2.5)

CodeCover- Specification 16

2.3.4 Measure coverage

associate test case

select instrumentable items

select coverage criteria

configure measurement

generic user

instrument instrumentable items

analyze coverage log

Eclipse user

measure coverage

analyze coverage log

<<include>>

instrument instrumentable items

connect to SUT for live test case noitification

start a test case in live mode end a test case in live mode

disconnect from the SUT

finish the coverage measurement in live mode

download the coverage log file

<<include>> <<include>>
<<include>>

<<include>><<include>>

<<include>>

<<include>>

Figure 2.3: Use cases related to measuring coverage

2.3.4.1 Use case: select instrumentable items

2.3.4.1.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.1.2 Preconditions

The actor has opened an Eclipse project containing at least one instrumentable item↗.

2.3.4.1.3 Regular sequence

The actor selects one or more instrumentable items – e.g. in the Package Explorer

– and clicks on the check box menu item Use For Coverage Measurement in the

CodeCover- Specification 17

context menu.

To deselect instrumentable items, the actor repeats the described procedure and clicks

on the context menu item Use For Coverage Measurement again.

2.3.4.1.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.1.5 Postconditions

Selecting or deselecting an instrumentable item has an recursive effect on all its sub

items: for example, selecting a package causes all its sub packages and types to be

selected, too. The same applies for the deselecting. If an instrumentable item had been

selected before and a parent item is selected later, the originally selected item remains

selected.

In the Package Explorer, the icons of the selected instrumentable items change to

Used For Coverage Measurement state.

If the actor has deselected instrumentable items, the icon changes to the normal state.

(see section 3.1)

2.3.4.1.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.4.2 Use case: select coverage criteria

2.3.4.2.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.2.2 Preconditions

If the actor has not changed the coverage criteria of a project, all coverage criteria are

selected.

2.3.4.2.3 Regular sequence

The actor opens the Project Properties dialog for the particular project. Then he

clicks on the item CodeCover . Here the actor can select which coverage criteria he

wants to measure. To add a criterion for measurement, he activates the related check

box. Deactivating a check box means that the corresponding coverage criterion↗ will

not be measured. It is not possible to deselect all check boxes and apply the changes.

CodeCover- Specification 18

After the actor has made his choice, he clicks on the button OK. The dialog Properties

closes.

2.3.4.2.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.2.5 Postconditions

At least one coverage criterion is selected for the edited Eclipse project. The software

saves this selection. In addition to that, the software checks whether the already instru-

mented instrumentable items↗ must be reinstrumented for the new selection of coverage

criteria.

2.3.4.2.6 Possible exceptions

If the actor has deselected all check boxes the dialog prohibits the click on OK.

2.3.4.3 Use case: instrument instrumentable items

2.3.4.3.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.3.2 Preconditions

There are no special preconditions needed for this use case.

2.3.4.3.3 Regular sequence

The actor uses the menu Project and the menu item Instrument Project. . . to

explicitly instrument the selected instrumentable items. A dialog opens and asks the

actor to enter the target path for instrumented code files↗. The actor puts in a valid

path he has write access to. With a click on the button Instrument he starts the

instrumentation↗ process.

While this process is running, a progress bar appears to inform the actor about the

progress of the instrumentation process. The Eclipse integrated progress bar is used for

this purpose.

2.3.4.3.4 Other sequences

This use case is implicitly started by the use case measure coverage (see section 2.3.4.4).

In this case, the default target folder of the project for instrumented code files is used

CodeCover- Specification 19

and the dialog is not displayed (see section 2.7.1).

If there are no instrumentable items selected for coverage measurement, the software

opens a dialog box to ask the actor, whether he wants to instrument every instrumentable

item or wants to cancel.

2.3.4.3.5 Postconditions

If the use case is explicitly started by the user, a new code base↗ is created having

the date and time of the end of the instrumentation process. A MAST↗ is created of

the source files. A new session container↗ is created, containing the code base and the

MAST. The session container is stored. In the Test Sessions view the new code base

is selected. It has got no test session. All code files which are Used For Coverage

Measurement are instrumented and stored at the given target path. All other source

files are just copied.

The same procedure is used, if this use case is implicitly started by the use case measure

coverage. The only exception is made, if no changes were made at the source files of the

project since the last start of measure coverage for this project and the selection of the

code files Used For Coverage Measurement has not changed. In this case, the

last selected code base can be used again.

2.3.4.3.6 Possible exceptions

If the instrumented code files could not be written – e.g. due to lack of access permissions

or low disk space – an error message is shown to inform the actor.

2.3.4.4 Use case: measure coverage

2.3.4.4.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.4.2 Preconditions

At least one coverage criterion is activated for measurement. There is an entry point↗

in the current project.

2.3.4.4.3 Regular sequence

The actor navigates to the entry point for which he wants to start the coverage mea-

surement. He clicks on the Coverage Button (see figure 3.3) and at the appearing

menu on the button Coverage As. . . , Java-Application.

CodeCover- Specification 20

If no code file of this project has been changed since the last start of this use case for the

same project and the selection of the code files Used For Coverage Measurement

has not changed, no instrumentation is needed. Otherwise, the software will implicitly

start the use case instrument instrumentable items (see section 2.3.4.3) and a new code

base will be created.

After having instrumented all the required files, the software rebuilds the instrumented

code files↗ and starts the SUT↗ using the selected entry point.

After the instrumented project has terminated, the software proceeds with the measure-

ment calculation of the covered elements.

2.3.4.4.4 Other sequences

If the actor has not selected any instrumentable item for coverage measurement, the

software opens a dialog box to ask the actor, whether he wants to instrument every

instrumentable item or wants to cancel.

If the entry point has been used for coverage measurement before, the list of the Cov-

erage Button contains this entry so that the actor can use this entry directly instead

of using the buttons Coverage As. . . , Java-Application again.

Additionally, the Coverage dialog (see section 3.3) contains entries for coverage mea-

surements used in past. The actor can use this dialog to start a coverage measurement

too. He selects the entry in the entry list on the left and clicks on the button Coverage.

2.3.4.4.5 Postconditions

The result of the coverage measurement run is a coverage log↗. The use case analyze

coverage log (see section 2.3.4.6) is implicitly started for this coverage log. This use case

produces a test session for the measurement.

The software has saved the results of the coverage measurement in a new test session.

This test session has the name New test session and a number as suffix if needed for

uniqueness. The Test Sessions view (see figure 3.5) contains the new test session

which is automatically selected. All test cases of the new test session are shown in the

list of test cases. They are all automatically activated.

If there had not been at least one instrumentable item selected for coverage measurement

and the software had selected all after request, then the state of them changes to Used

for Coverage Measurement and the Package Explorer updates their icons.

CodeCover- Specification 21

2.3.4.4.6 Possible exceptions

If there are errors in the process, the process will be canceled and an error message will

be shown. Possible errors might be:

• I/O errors while instrumenting

• compile errors

• errors starting the entry point

• access permissions or low disk space when writing the coverage log↗

2.3.4.5 Use case: associate test case

2.3.4.5.1 Purpose

The actor wants the software to start a named test case, when the control flow passes

a specific line in a code file, e.g. the actor has written a test script which calls several

methods of several test classes. Test cases should be defined for each of these method

calls.

2.3.4.5.2 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.5.3 Preconditions

There is a code file in an open Eclipse project which contains the code the actor wants

to add test case notifications to.

2.3.4.5.4 Regular sequence

The actor navigates to the code file and positions the cursor before the line of the code

file where the test case should start. Then he uses the menu items Source, CodeCover

Test Case Notification, Start Test Case With Name And Comment (see

section ??). The software adds an import declaration in the file and adds a new code

line at the position of the cursor:

Protocol.startTestCase("%NAME%", "%COMMENT%");

The actor changes "%NAME%" and "%COMMENT%" to the name and the comment of the test

case. The software is ordered to start a new test case when this method is called in the

coverage measurement.

CodeCover- Specification 22

To define the end of a test case, the actor uses the menu items Source, CodeCover

Test Case Notification, End Test Case With Name (see section ??). The

software adds a new code line:

Protocol.endTestCase("%NAME%");

The actor changes the "%NAME%" to the name of the test case started before and saves

the file.

2.3.4.5.5 Other sequences

If the actor wants multiple test cases, he uses this procedure at different lines of the code

file. He can also associate test cases in other code files.

If the actor only wants to have one test case for the whole test script, he must not add

a special statement anywhere. The software then treats the whole measurement as one

test case. (see section 2.1)

There are also other test case notification forms possible that have the same effect. These

are described in section 2.1. The start of a test case implies the end of the prior test

case.

If the actor is more advanced, he can write the statement into the source code on his

own. In this case he must add the JAR containing the Protocol class to the class path

of the related Eclipse project too.

2.3.4.5.6 Post conditions

The software or the actor has added the JAR containing the Protocol class to the class

path of the Eclipse project. The code file is prepared for measurement with test case

association.

2.3.4.5.7 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.4.6 Use case: analyze coverage log

2.3.4.6.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

CodeCover- Specification 23

2.3.4.6.2 Preconditions

The actor has used the use case instrument instrumentable items and has run the com-

piled SUT on his own and without Eclipse support. In the consequence there is a

coverage log related to an Eclipse project.

If the actor has instrumented the code files out of Eclipse, the actor has to import the

session container↗ with the corresponding code base↗ first (see section 2.3.6.2).

Anyway, there is a code base loaded in Eclipse and the source files of this code base were

compiled and executed. A coverage log↗ file was created.

2.3.4.6.3 Regular sequence

The actor activates the Test Sessions view (see figure 3.5). In the view, he clicks on

the button Import Coverage Log. The import dialog for session containers opens.

In the dialog the actor specifies the coverage log. Moreover he must state a name and

can type a comment for the test session that will be created. After that, he clicks on

Finish. The dialog closes. (see figure ??)

2.3.4.6.4 Other sequences

The dialog for importing a coverage log↗ file can also be opened by using the default

Eclipse import dialog. For example this can be opened using the menu File and the

item Import. . . . There the actor selects the item CodeCover Coverage Log in the

group Other and clicks on Next.

2.3.4.6.5 Post conditions

The software processes the given coverage log and creates a new test session with the

given name and comment. The test session is assigned to the corresponding code base.

The test session is saved in the session container↗.

In the new test session is selected in the Test Sessions view (see figure 3.5). All its

test cases are shown in the list of the test cases and are selected.

2.3.4.6.6 Possible exceptions

If there is no code base↗ in Eclipse, the new coverage log belongs to, an error message

is shown.

If the test session is not related to the Eclipse project of the code base, the code high-

lighting won’t be possible (see section 2.3.5.3) but the coverage results can be examined

CodeCover- Specification 24

(see section 2.3.5.2).

If there are errors processing the coverage log, the process is interrupted and an error

message is shown.

2.3.4.7 Use case: configure measurement

The following use cases contains the configuration of the measurement behavior. It is

described in section 2.5.

2.3.4.8 Use case: connect to an SUT for live test case notification

2.3.4.8.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.8.2 Preconditions

The instrumented SUT has been configured to support the live test case notification and

is running. The Test Case Notification view is open.

2.3.4.8.3 Regular sequence

The actor enters the host name and port to connect to and clicks the Connect button.

2.3.4.8.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.8.5 Postconditions

The view is connected to the running SUT.

2.3.4.8.6 Possible exceptions

If there was a network error, an error message is shown.

If the CodeCover MBean is not available on the server, the client waits until a Code-

Cover MBean is registered; all operations except disconnecting will stay disable until a

CodeCover MBean is registered on the Server.

2.3.4.9 Use case: start a new test case in live mode

2.3.4.9.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

CodeCover- Specification 25

2.3.4.9.2 Preconditions

A connection to a running SUT is established (see use case 2.3.4.8). The Test Case

Notification view is open. The coverage measurement in the current SUT run is not

finished.

2.3.4.9.3 Regular sequence

The actor enters a test case name in the text field of the view and clicks the Start

button.

2.3.4.9.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.9.5 Postconditions

The test case has been started.

2.3.4.9.6 Possible exceptions

If there was a network error, an error message is shown.

2.3.4.10 Use case: end the current test case in live mode

2.3.4.10.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.10.2 Preconditions

A connection to a running SUT is established (see use case 2.3.4.8). The Test Case

Notification view is open. A test case is started.

2.3.4.10.3 Regular sequence

The actor clicks the End button in the Test Case Notification view.

2.3.4.10.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.10.5 Postconditions

The test case has been ended.

CodeCover- Specification 26

2.3.4.10.6 Possible exceptions

If there was a network error, an error message is shown.

2.3.4.11 Use case: finish coverage measurement in live mode

2.3.4.11.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.11.2 Preconditions

A connection to a running SUT is established (see use case 2.3.4.8). The Test Case

Notification view is open.

2.3.4.11.3 Regular sequence

The actor clicks the Finished button in the Test Case Notification view.

2.3.4.11.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.11.5 Postconditions

The measurement has been finished.

2.3.4.11.6 Possible exceptions

If there was a network error, an error message is shown.

2.3.4.12 Use case: download the coverage log file

2.3.4.12.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.12.2 Preconditions

A connection to a running SUT is established (see use case 2.3.4.8). The Test Case

Notification view is open. The coverage measurement has been finished.

2.3.4.12.3 Regular sequence

The actor clicks the Download button in the Test Case Notification view.

CodeCover- Specification 27

2.3.4.12.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.12.5 Postconditions

The coverage log file is downloaded and has the same base name as the file written on

the system running the SUT and the same location as if the execution was local and

triggered by CodeCover Eclipse plug-in.

2.3.4.12.6 Possible exceptions

If there was a network or file access error, an error message is shown.

2.3.4.13 Use case: disconnect from the SUT in live mode

2.3.4.13.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.4.13.2 Preconditions

A connection to a running SUT is established (see use case 2.3.4.8). The Test Case

Notification view is open.

2.3.4.13.3 Regular sequence

The actor clicks the Disconnect button in the Test Case Notification view.

2.3.4.13.4 Other sequences

There are no other sequences possible for this use case.

2.3.4.13.5 Postconditions

The connection to the SUT is closed.

2.3.4.13.6 Possible exceptions

If there was a network error, a warning is shown.

CodeCover- Specification 28

2.3.5 Show coverage

Eclipse user

select test cases

show coverage results show covered code

Figure 2.4: Use cases related to showing coverage

2.3.5.1 Use case: select test cases

2.3.5.1.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.5.1.2 Preconditions

There is at least one test session in Eclipse which has at least one test case.

2.3.5.1.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5). Then he selects the related

Code base.

Now the actor can activates all test cases he wants to view the coverage results of,

using the Activated check boxes. The rest of the test cases’ check boxes have to be

deactivated.

2.3.5.1.4 Other sequences

The actor can select test cases of different test sessions. To select all test cases of a test

session, the actor uses the Activated check box of the specific test session.

There are some other sequences possible to activate test cases – e.g. using the context

menu in the Test Sessions view (see section 3.5).

CodeCover- Specification 29

2.3.5.1.5 Postconditions

The source code highlighting and the coverage view are refreshed if needed, based on

the results of the selected test cases.

2.3.5.1.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.5.2 Use case: show coverage measurement

2.3.5.2.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.5.2.2 Preconditions

The actor has selected test cases of test sessions belonging to the same code base (see

use case select test cases, section 2.3.5.1).

2.3.5.2.3 Regular sequence

The actor activates the Coverage view of the plug-in (see figure 3.4). At this view

he has an overview of all instrumented instrumentable items in a hierarchical order. He

can expand an item of the hierarchy to examine the coverage results of its sub items.

The result columns show the measured results of the coverage by criterion. Only the

criteria that are measured are shown in this view.

To order the lines of the tree table ascending or descending, the actor clicks respectively

clicks twice on the specific column header. The lines of items are then sorted within

their parent item in the tree table.

2.3.5.2.4 Other sequences

There are no other sequences possible for this use case.

2.3.5.2.5 Postconditions

There are no possible post conditions of this use case.

2.3.5.2.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

CodeCover- Specification 30

2.3.5.3 Use case: show covered code

2.3.5.3.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.5.3.2 Preconditions

The actor has selected test cases of test sessions belonging to the same code base (see use

case select test cases, section 2.3.5.1). The code base of the test sessions selected is still

the current one, which means, no code file has been changed since the instrumentation

of the code files.

2.3.5.3.3 Regular sequence

The actor navigates to the code file in which the coverage results are to be displayed by

source code highlighting. Then he opens the code file in an editor.

2.3.5.3.4 Other sequences

There are no other sequences possible for this use case.

2.3.5.3.5 Postconditions

The software highlights the elements of the code according to results of the measurement

of the selected coverage criteria. The highlighting rules are specified in section 3.8 in

detail.

2.3.5.3.6 Possible exceptions

If a code file has changed since the coverage run of the test session, the highlighting can

not be shown. Therefore the software has to check, if the code file has the same content

as the code file used for the related coverage run.

If the actor changes a code file, the highlighting is not possible anymore. If he revokes

his changes, the software shows the highlighting again.

CodeCover- Specification 31

2.3.6 Administrate test sessions

delete test session

merge test sessions merge test cases

delete test case

<<include>>
<<include>>

edit test session properties edit test case properties

generic user

Eclipse user

import session container

export session container

drop code base

Figure 2.5: Use cases related to administrating test sessions

2.3.6.1 Preface

These use cases are based on other use cases described before. By measuring the cov-

erage, the software creates a test session containing associated test cases. They are the

basis of analysis and can be edited in several ways. The test sessions and test cases can

be merged and their properties can be altered. Test cases can be deleted from a test

session and whole test sessions with all included test cases can be deleted.

To use the Eclipse plug-in and the batch interface side by side, import and export

functionality is supported by the Eclipse plug-in. General definitions regarding test

sessions↗ and test cases are made in the section 2.1.

2.3.6.2 Use case: import session container

2.3.6.2.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

CodeCover- Specification 32

2.3.6.2.2 Preconditions

There must be at least one session container↗ in the file system. This can be either

created by a coverage measurement in Eclipse or using the batch mode (see section 2.4).

2.3.6.2.3 Regular sequence

The actor activates the Test Sessions view (see figure 3.5). In the view, he clicks on

the button Import Test Session. The import dialog for session containers opens (see

figure ??). In this dialog, the actor specifies the path to the session container and selects

the related Eclipse project. Finally the actor clicks on the button Finish. The dialog

closes.

2.3.6.2.4 Other sequences

The dialog for importing a session container can also be opened by using the default

Eclipse import dialog. For example this can be opened using the menu File and the

item Import. . . . There the actor selects the item CodeCover Session Container in

the group Other and clicks on Next.

If the code base of the session container is not related to an Eclipse project, the actor

needn’t select a project.

2.3.6.2.5 Postconditions

The code base of the session container is imported into Eclipse.

If the session container has got test session(s), they are imported too. In this case, one

of the imported test sessions is selected in the Test Sessions view (see figure 3.5). All

its test cases are shown in the list of the test cases and are activated.

All information needed to use the session container in Eclipse for future are saved.

2.3.6.2.6 Possible exceptions

If the code base↗ of the session container is not related to the specified project, the

code highlighting won’t be possible (see section 2.3.5.3) but the coverage results can be

examined (see section 2.3.5.2).

If there are errors loading the session container, the process is interrupted and an error

message is shown.

CodeCover- Specification 33

2.3.6.3 Use case: export session container

2.3.6.3.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.3.2 Preconditions

There must be at least one test session in Eclipse.

2.3.6.3.3 Regular sequence

The actor selects the code base and its test sessions he wants to export in the Test

Sessions view (see figure 3.5) and clicks on the button Export in the tool bar.

The export dialog opens (see figure 3.9). The selected code base and the selected test

sessions are preselected in the dialog, but the actor can also select more test sessions. He

changes the Type to CodeCover session container, chooses a destination and clicks

on Finish. The dialog closes.

2.3.6.3.4 Other sequences

The dialog for exporting a test session can also be opened by using the default Eclipse

export dialog. This dialog can for example be opened using the menu File and the item

Export. . . . In the selection dialog the actor selects the item CodeCover Coverage

Result Export in the group Other and clicks on Next.

2.3.6.3.5 Postconditions

A session container is created at the specified destination. It contains the code base and

all selected test session.

2.3.6.3.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.6.4 Use case: drop code base

2.3.6.4.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.4.2 Preconditions

There must be at least one code base in Eclipse.

CodeCover- Specification 34

2.3.6.4.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5), selects the code base↗ and

clicks on the button Drop Code Base. A dialog opens, requesting the actor if he

wants to drop the selected code base out of Eclipse or if he wants to deleted the related

session container↗ too. The actor clicks on the button Drop. The dialog closes.

2.3.6.4.4 Other sequences

If the actor wants to drop the code base out of Eclipse and delete the related code base

too, he clicks on Delete.

2.3.6.4.5 Postconditions

The selected code base and all depending test sessions and test cases are removed from

the Test Sessions view.

If the actor has chosen Delete, the session container of the code base is deleted in the

file system too.

2.3.6.4.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.6.5 Use case: merge test sessions

2.3.6.5.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.5.2 Preconditions

There must be at least two test sessions in Eclipse.

2.3.6.5.3 Regular sequence

The actor activates the Test Sessions view (see figure 3.5). In this view, he selects

the test session, he want to merge and clicks on the button Merge. The dialog Test

Session Properties opens (similar to figure 3.6).

The actor puts in the name and the comment of the merged test session and clicks on

the button OK. The dialog closes.

2.3.6.5.4 Other sequences

There are no other sequences possible for this use case.

CodeCover- Specification 35

2.3.6.5.5 Postconditions

A new test session with the specified name is created. All test case information from

the test sessions selected for merge are copied into the new test session. The new test

session is saved.

If some test cases have the same name, they are renamed to test case name (session

name 1), test case name (session name 2).

The new test session appears in the list of the Test Sessions view. The new session

and all its test cases are activated.

2.3.6.5.6 Possible exceptions

If the actor has selected less than two test sessions, the dialog prohibits the click on the

button Merge.

2.3.6.6 Use case: edit test session properties

2.3.6.6.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.6.2 Preconditions

There must be at least one test session in Eclipse.

2.3.6.6.3 Regular sequence

The actor activates the Test Sessions view (see figure 3.5), selects a test session

and clicks on the button Properties. The dialog Test Session Properties opens

(similar to figure 3.6).

The actor changes the name and/or the comment of the selected test session. After he

has finished editing the properties, he clicks on the button OK. The dialog closes.

2.3.6.6.4 Other sequences

There are no other sequences possible for this use case.

2.3.6.6.5 Postconditions

The new name and the new comment of the test session are saved. The name of the test

session changes in the list.

CodeCover- Specification 36

2.3.6.6.6 Possible exceptions

The new name of the test session can not equal to a name of another test session in the

session container. The dialog does not allow to save a duplicate name.

2.3.6.7 Use case: delete test session

2.3.6.7.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.7.2 Preconditions

There must be at least one test session in Eclipse.

2.3.6.7.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5), selects the related code base↗

and the test session. Then he clicks on the button Delete.

2.3.6.7.4 Other sequences

If the actor wants to drop more than one test session at once, he selects these test cases

and clicks on the button Delete. A dialog opens, requesting the actor if he really wants

to delete the selected test sessions. The actor clicks on the button Delete. The dialog

closes.

2.3.6.7.5 Postconditions

The selected test sessions are removed from the session container and from the Test

Sessions view.

2.3.6.7.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.6.8 Use case: merge test cases

2.3.6.8.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.8.2 Preconditions

There must be a test session in Eclipse that contains at least two test cases that fit the

merging criteria stated in section 2.1.

CodeCover- Specification 37

2.3.6.8.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5), selects the related code base↗,

the test session and the test cases. Then he clicks on the button Merge. The dialog

Test Case Properties opens (see figure 3.6).

The actor puts in the name and the comment of the merged test case and clicks on the

button OK. The dialog closes.

2.3.6.8.4 Other sequences

The actor can also use the item Merge in the context menu of the test cases.

2.3.6.8.5 Postconditions

A new test case with the specified name is created. All information from the selected

test cases are copied into the new test case. The test case is saved.

The new test case appears in list of the Test Sessions view.

2.3.6.8.6 Possible exceptions

If the actor has selected less than two test cases, the button Merge Test Cases is

deactivated.

2.3.6.9 Use case: edit test case properties

2.3.6.9.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.9.2 Preconditions

There must be at least one test case in a test session in Eclipse.

2.3.6.9.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5), selects the related code base↗,

the test session and the test case. Then he clicks on the button Properties. The dialog

Test Case Properties opens (see figure 3.6).

The actor changes the name and/or the comment of the selected test case. After he has

finished editing the properties, he clicks on the button OK. The dialog closes.

CodeCover- Specification 38

2.3.6.9.4 Other sequences

The actor can also use the menu item Properties in the test case’s context menu in

the Test Sessions view.

2.3.6.9.5 Postconditions

The new name and the new comment of the test case are saved. The name of the test

case is updated in the list.

2.3.6.9.6 Possible exceptions

If the actor has not selected exactly one test case, the button Test Case Properties

is deactivated.

The new name of the test case can not equal to a name of another test case in the test

session. The dialog does not allow to save a duplicate name.

2.3.6.10 Use case: delete test case

2.3.6.10.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.6.10.2 Preconditions

There must be at least one test case in a test session in Eclipse.

2.3.6.10.3 Regular sequence

The actor opens the Test Sessions view (see figure 3.5), selects the related code base↗,

the test session and the test case. Then he clicks on the button Delete. A dialog opens,

requesting the actor if he really wants to delete the selected test cases. The actor clicks

on the button Delete. The dialog closes.

2.3.6.10.4 Other sequences

The actor can also use the menu item Delete in the test case’s context menu in the

Test Sessions view.

2.3.6.10.5 Postconditions

The selected test cases are removed from the list in the Test Sessions view. The test

cases are removed from the test session in the session container.

CodeCover- Specification 39

2.3.6.10.6 Possible exceptions

There are no special possible exceptions to be considered for this use case.

2.3.7 Use case: generate report

2.3.7.1 Actor

The actor of this use case is the Eclipse user (see section 2.2).

2.3.7.2 Preconditions

There must be at least one test session in Eclipse.

2.3.7.3 Regular sequence

The actor selects a code base↗ and a set of test sessions in Test Sessions view (see

figure 3.5). Then he clicks on the button Export. The Export dialog opens (see

figure 3.9).

The current code base and the selected test sessions are preselected in the dialog, but

the actor can also select another code base or other test sessions. He changes the Type

to Report, chooses a destination and clicks on Next. The report dialog opens (see

figure 3.10).

The actor clicks on the button Finish. The dialog closes.

2.3.7.4 Other sequences

The dialog for generating a report can also be opened by using the default Eclipse export

dialog. For example, this can be done using the menu File and the item Export. . . .

There the actor selects the item CodeCover Coverage Result Export in the group

Other and clicks on Next.

2.3.7.5 Post conditions

A report is generated and stored in the chosen directory. The contents and appearance

of the generated report is defined in section 2.6.

CodeCover- Specification 40

2.3.7.6 Possible exceptions

If the report files could not be written – e.g. due to lack of access permissions or low

disk space – an error message is shown to inform the actor.

2.4 Batch interface

2.4.1 Preface

To describe the use cases for the actor shell user, the shell commands are described. It

is recommended that the executable codecover is contained in the PATH variable of the

operating system.

The software can be run in the shell by calling either codecover %command% [%op-

tions%] or codecover %option%. All available commands are described in the rest of

this section. Section 2.4.3 contains an overview about all supported commands.

If the actor wants to use spaces in arguments – e.g. file names – he must take care that

the shell he is using parses the file name as one argument. For example he might enclose

the file name using quotation marks: "my file name.sql".

If the actor has called the software with an unsupported command, the software stops

immediately and prints an error message:

Command not supported. Use "codecover −−help" for a command overview.

If the actor has called the software with a supported command but a wrong option or

syntactically wrong parameters, the software stops immediately and prints an error mes-

sage like this:

Wrong argument usage. Use "codecover help %command%" for options descrip-

tion.

2.4.2 General options

Using the software without a command some general options are supported. These

options can be used by: codecover %option%.

CodeCover- Specification 41

Option Explanation

--help|-h A help page containing this command overview. Has the same

effect like codecover help.

--version|-V Prints out the version of the software.

Table 2.1: General batch options

2.4.3 Command overview

For almost every command, either a long or a short version can be used. These commands

can be used by codecover %command% [%options%].

Command Description

instrumenter-info|ii Information of all available instrumenters

instrument|in Instrumentation↗ of code files↗

analyze|an Analysis of a coverage run to create a test session

report|re Generating a report from a test session

info Showing the information of a session container↗ and

contained test sessions and test cases

merge-sessions|ms Merging two or more test sessions

alter-session|as Altering test session information

copy-sessions|cs Copy test sessions from one session container to another

remove-sessions|rs Removing test sessions from a session container

merge-test-cases|mc Merging two or more test cases

alter-test-case|at Editing test case information

remove-test-cases|rt Removing test cases from a session container

help|h A help page containing this command overview or an

option and parameter overview a given command.

Table 2.2: Batch command overview

CodeCover- Specification 42

2.4.4 Global command options

For every command a set of options is supported. In addition to specific command

options, all commands support some global parameterless options. They are not required

but change the behavior of the software when used. These commands can be used by

codecover %command% [%options%].

Option Explanation

--verbose|-v Orders the software to print more information as usual. For

example this can be a description of the actions being done.

This option is the opposite of --quiet.

--quiet|-q Orders the software not to print information to the shell. This

option is the opposite to --verbose.

--pretend|-p Orders the software not to perform any actions affecting the

data persistently but to print information about what the

software would do instead. Using --pretend the actor can

make sure that his command has the correct syntax and would

be successfully executed.

--help|-h Prints an option and parameter overview of the given com-

mand. Has the same effect like codecover help %command%.

Table 2.3: General batch options

2.4.5 Instrumenter-info

This command allows the actor to get information of the instrumenters, that are available

by the software. Using this command, the actor can get to know, which instrumenter

fits to his programming language and which additional options are supported.

This command is run by:

codecover (instrumenter-info|ii) [options]

Option Parameter and description Default

Short Long if omitted

-l --language the name of the programming language all

CodeCover- Specification 43

Option Parameter and description Default

Short Long if omitted

Table 2.4: Options for command instrumenter-info

2.4.6 Instrument

This command instruments a set of code files↗. To select the code files, which should

be instrumented, a root-directory must be specified. All code files must be located

under this directory. For this reason a default package would be the best choice.

For a more detailed selection, include patterns can be used. These patterns allow wild-

cards and are adopted from the apache ant project2 (see the pattern description3). The

actor can specify more than one include pattern, to select the source files for instrumen-

tation. The same way exclude patterns can be specified.

A file will be instrumented, if its relative path matches at least one include pattern, if

it has the correct extension for the stated programming language and its relative path

matches no exclude pattern.

This command is run by:

codecover (instrument|in) [options]

Option Parameter and description Required /

Short Long Default

-r --root-directory the root directory of the source files •
-l --language the name of the programming language •
-d --destination the destination directory for the instru-

mented files

•

-c --container the new session container •
-I --instrumenter the unique key of the instrumenter to use

-a --charset the character encoding of the source files system default

-i --include a relative include pattern; this argument

can occur more than one time

all files

2http://ant.apache.org/
3http://ant.apache.org/manual/dirtasks.html

http://ant.apache.org/
http://ant.apache.org/manual/dirtasks.html
http://ant.apache.org/
http://ant.apache.org/manual/dirtasks.html

CodeCover - Specification 44

Option Parameter and description Required /

Short Long Default

-f --includes-file a file containing a list of relative include

patterns separated by new line

-e --exclude a relative exclude pattern; this argument

can occur more than one time

-x --excludes-file a file containing a list of relative exclude

patterns separated by new line

-o --criterion one of (all, st, br, co, lo); this argu-

ment can occur more than one time –

once for every criterion

all

-u --copy-uninstrumented advices the software to copy all files of

the root-directory, that were not instru-

mented, to the destination

disabled

-D --directive arguments of the style key=value to en-

able special features of the instrumenter;

the instrumenter-info command should

print out a list of directives, an instru-

menter supports

Table 2.5: Options for command instrument

The arguments of option criteria stand for:

Criteria abbreviation Explanation

all all criteria

st statement coverage↗

br branch coverage↗

co condition coverage↗

lo loop coverage↗

Table 2.6: Explanation of the criteria abbreviations

An example call of the command instrument is:

codecover instrument --root-directory "C:\my files\project 1\" --include

CodeCover- Specification 45

"de\foo\pak1**" --include "de\foo\pak2\dot*.java" --exclude "***Test.java"

-d "C:\my files\instrumented\" --language java --criterion st --criterion br

--copy-uninstrumented --container session-container-file.xml

The option --copy-uninstrumented can be used to get a replica of a source directory

including resource files like images or configuration files.

If there is more than one instrumenter available for the specified programming language,

the software aborts this instrumentation attempt. An error message is printed out like

There is more than one instrumenter available for %programming language%.

Please use the command codecover instrumenter-info to get to know the

unique key of the instrumenter you prefer. Than use the option instrumenter

for this command to exactly specify the instrumenter by its unique key.

Along with the instrumented code files, the instrumentation process produces a session

container↗ containing the code base↗ and the MAST↗. The new code base↗ is has the

date and time of the end of the instrumentation process. The code base is stored.

2.4.7 Analyze

This command is run by:

codecover (analyze|an) [options]

This command needs the session container produced by the instrumentation process and

the coverage log↗ produced by the executed instrumented and compiled program.

Option Parameter and description Required /

Short Long Default

-c --container the session container the coverage data

should be added to

•

-g --coverage-log the coverage log produced by the exe-

cuted program

•

-n --name the name of the new test session contain-

ing the coverage results

•

-m --comment a comment describing the test session empty

CodeCover- Specification 46

Option Parameter and description Required /

Short Long Default

-a --charset the character encoding of the coverage

log file

system default

Table 2.7: Options for command analyze

If the target session container does not exist, an empty session container is created at

the specified target.

2.4.8 Report

This command is run by:

codecover (report|re) [options]

This command requires a test session, produced by the command analyze and a template

file for the report generation.

Option Parameter and description Required

Short Long

-c --container the session container to use •
-s --session the name of the test session for the report •
-p --template the template file containing transforma-

tion descriptions

•

-d --destination the destination for the report •

Table 2.8: Options for command report

The generated report file will be a HTML↗ file. The HTML file and a subdirectory

containing other sources will be created.

2.4.9 Info

This command is run by:

codecover info [options]

CodeCover- Specification 47

This command shows information about a session container.

Option Parameter and description Required

Short Long

-c --container the session container •
-s --session the name of a test session

-T --test-cases showing test case information

Table 2.9: Options for command info

If no options are used, the program puts out a list of all sessions ordered by code base.

The output can look like this:

user@rechner ~ >codecover info --container main.xml

codecover session container: "main.xml"

code bases and test sessions:

code base ID | session | date | time

12 | | 21.10.2006 | 17:23:00

| GUI | 22.10.2006 | 20:14:03

| Performance | 22.10.2006 | 20:14:50

14 | | 22.10.2006 | 21:12:00

| Model I | 22.10.2006 | 22:16:41

15 | | 23.10.2006 | 08:11:00

| Model II | 24.10.2006 | 06:43:00

If the argument --test-cases is set, additionally to every session all test cases are

put out.

If the test session name is set, the output is reduced just for the indicated test session.

The output can look like this:

CodeCover- Specification 48

user@rechner ~ >codecover info --container main.xml --session "GUI test"

--test-cases

codecover session container: "main.xml"

session name: GUI test

session comment: some clicks in the menu

session date: 22.10.2006

session time: 20:12:01

test cases:

name | date | time

menu file | 22.10.2006 | 20:14:03

menu edit | 22.10.2006 | 20:14:50

menu options | 22.10.2006 | 20:16:41

menu view | 22.10.2006 | 20:17:13

menu help | 22.10.2006 | 20:19:37

2.4.10 Merge-sessions

This command is run by:

codecover (merge-sessions|ms) [options]

With this command the actor can merge two or more test sessions in a session container↗

into a new test session (see section 2.1).

Option Parameter and description Required /

Short Long Default

-c --container the session container to use •
-s --session a name of a test session participating at

the merging; this argument can occur

more than one time – once for every par-

ticipant

•

-R --remove-old-test-sessions indicates, whether or not the test ses-

sions, that were merged, are removed af-

ter merging

CodeCover- Specification 49

Option Parameter and description Required /

Short Long Default

-n --name the name of the merged test session •
-m --comment a comment describing the merged test

session

empty

Table 2.10: Options for command merge-sessions

2.4.11 Alter-session

This command is run by:

codecover (alter-session|as) [options]

With this command the actor can change the information of a test session.

Option Parameter and description Required /

Short Long Default

-c --container the session container to use •
-s --session the old name of the test session •
-n --name a new name of the test session name not altered

-m --comment a new comment describing the test ses-

sion

comment not altered

Table 2.11: Options for command alter-session

2.4.12 Copy-sessions

This command is run by:

codecover (copy-sessions|cs) [options]

With this command the actor can copy one or more test sessions from a session container

to another.

CodeCover- Specification 50

Option Parameter and description Required

Short Long

-c --container the source session container •
-s --session a name of a test session participating at

the copy; this argument can occur more

than one time – once for every partici-

pant

•

-d --destination the destination session container •

Table 2.12: Options for command copy-sessions

If the destination session container does not exist, a copy of the source session container

containing only the defined sessions is created at the specified destination.

2.4.13 Remove-session

This command is run by:

codecover (remove-sessions|rs) [options]

With this command the actor can remove one or more test sessions and their test cases

from a session container.

Option Parameter and description Required

Short Long

-c --container the session container to remove from •
-s --session the name of the test session to be re-

moved; this argument can occur more

than one time – once for every test ses-

sion

•

Table 2.13: Options for command remove-sessions

2.4.14 Merge-test-cases

codecover (merge-test-cases|mt) [options]

CodeCover- Specification 51

With this command the actor can merge two or more test cases into one test case.

These test cases must be in one test session and must fit the merging criteria stated in

section 2.1.

Option Parameter and description Required /

Short Long Default

-c --container the session container to use •
-s --session the name of the test session •
-t --test-case a name of a test case participating

at the merging; this argument can

occur more than one time – once

for every participant

•

-R --remove-old-test-cases indicates, whether or not the test

cases, that were merged, are re-

moved after merging

-n --name the name of the merged test case •
-m --comment a comment describing the merged

test case

empty

Table 2.14: Options for command merge-test-cases

2.4.15 Alter-test-case

codecover (alter-test-case|at) [options]

With this command the actor can change a test case (see section 2.1).

Option Parameter and description Required /

Short Long Default

-c --container the session container to use •
-s --session the name of the test session •
-t --test-case the old name of the test case •
-n --name the new name of the test case new name ignored

-m --comment a new comment describing the test case new comment ignored

Table 2.15: Options for command alter-test-case

CodeCover- Specification 52

2.4.16 Remove-test-cases

This command is run by:

codecover (remove-test-cases|rt) [options]

With this command the actor can remove one or more test cases of a test session from

a session container.

Option Parameter and description Required

Short Long

-c --container the session container to use •
-s --session the name of the test session •
-t --test-case the name of the test case to be removed;

this argument can occur more than one

time – once for every test case

•

Table 2.16: Options for command remove-test-cases

2.4.17 Help

codecover (help|h) [%command%]

Using the command help without using an optional command, the program prints a

help page containing the command overview (see section 2.4.3).

If a command is given, the program prints an option and parameter overview of the

given command. Has the same effect like codecover %command% --help.

2.5 Configuration

2.5.1 Overview

Eclipse creates files containing preferences and other information at the run time. These

files are stored in the default folders defined for Eclipse plug-ins. They can be separated

into global preferences and project wide properties. Files to store are:

CodeCover- Specification 53

• preferences for the plug-in

• properties for every Eclipse project↗

• stored session containers with test sessions

• instrumented code files↗

• compiled instrumented code files

There are several options which control the behavior and the appearance of the software.

For the Eclipse user, there is the dialog Preferences for Eclipse wide configuration

and Properties for project wide configuration. (see section 2.5.2)

For the batch mode there is a default configuration in the release jar, which can not be

altered by the shell user but can be overwritten for each batch run by setting options on

the command line.

The report style is configured by template XML files (see section 2.6), which can be

processed using the batch mode.

2.5.2 Configure Eclipse plug-in

To configure the behavior and the general appearance of the Eclipse plug-in, a configura-

tion file is stored. The Eclipse default mechanism for storing plug-in preferences is used.

The target folder will be a sub folder of the .metadata folder in the Eclipse workspace.

The Eclipse user can use the Eclipse dialog Preferences to edit the Eclipse-wide

plug-in preferences of the software. The Eclipse user clicks on the menu Window

and the entry Preferences. . . . In the Eclipse configuration dialog, there is an entry

CodeCover – the configuration section of the software. (see section 3.9)

On the corresponding dialog page, the user can configure the following preferences:

Configurable property Available options

colors of the source code highlight-

ing

for each code element – covered, partly covered

and not covered – one color from a color chooser

and an enable button

Table 2.17: Configurable properties of Eclipse

To configure project properties, the actor uses the Eclipse dialog Properties (see sec-

CodeCover- Specification 54

tion 3.10). These preferences are also stored using common Eclipse preference methods

for plug-ins.

In the dialog Properties there is a section CodeCover where following properties can

be configured:

Configurable property Available options

coverage criteria a not empty multiple selection out of statement

coverage↗, branch coverage↗, condition cover-

age↗, loop coverage↗

Table 2.18: Configurable properties of an Eclipse project

2.6 Report

2.6.1 HTML

2.6.1.1 Overview

The hierarchic HTML↗ report consists of a set of HTML files placed into a directory

tree. The HTML files contain the results of the coverage measurement.

There are three different types of HTML files: code pages, selection pages and title pages.

These types are in a hierarchical order: the top-most page is the title page, followed by

a number of selection pages. The bottom-most page type is the code page. Depending

on the programming language the SUT↗ is written in, the depth of this structure may

vary.

Each page type contains a lexicographically ordered list of elements with the coverage

results measured for this element. Results for each coverage criterion↗ are always shown

in two columns: in the first column, the number of covered items (e.g. branches) and

the total number of items is written, separated by a slash, and in the second column the

percentage of coverage is written with a colored bar graph visualizing this percentage.

CodeCover- Specification 55

2.6.1.2 Title page

Each report has exactly one title page named index.html that shows a summary of the

measured coverage of the whole project↗ (as far as it was instrumented).

This summary is followed by a list of metrics, number of instrumented packages, classes

and methods.

The next element of the title page is a list as described in subsection Overview. It contains

the top-most structural elements the programming language of the SUT provides. Each

of these elements is a link to a file on the next deeper level. If the language only has two

hierarchical levels, that file is a code page, otherwise it is a selection page.

In the following the title page shows an overview of the test cases↗. If JUnit test cases

were used, the test case overview is enriched with these information. Here is an example

of this overview:

Number of test cases 8

Number of JUnit test cases 6

Number of failures 3

Number of errors 1

Table 2.19: Draft of the test case overview at the report title page

Date Test case name Comments

2007-03-13 15:43:02 GUI test 1

2007-03-13 18:09:18 GUI test 2

2007-03-13 21:55:57 Black box test

2007-03-13 23:01:20 tests.MoneyTest.testMoney1

2007-03-13 23:01:22 tests.MoneyTest.testMoney2 failure

AssertionFailedError at MoneyTest.java:23

2007-03-13 23:06:28 tests.PersonTest tests.PersonTest.testSetName
tests.PersonTest.testSetSalary
error

ArithmeticException at Person.java:45

2007-03-13 23:06:29 tests.DatabaseTest tests.DatabaseTest.testLoad
tests.DatabaseTest.testStore
failure

AssertionFailedError at DatabaseTest.java:57
tests.DatabaseTest.testCommit

CodeCover- Specification 56

2007-03-13 23:06:44 tests.FileTest tests.FileTest.testImport
error

AssertionFailedError at FileTest.java:21
tests.FileTest.testExport

Table 2.20: Draft of the test case table at the report title page

The first three test cases were captured out of JUnit. For the fourth and the fifth test

case (tests.MoneyTest.testMoney) test methods of JUnit test cases were used as test

cases. The other test cases are equal to the JUnit test cases. To allow a more detailed

inspection, their test methods are show too. In the column Failures and Errors JUnit

failures and errors are listed for JUnit test cases and test methods.

2.6.1.3 Selection page

Each selection page belongs to one element of the SUT at one hierarchical level. In Java,

e.g., one selection page could belong to the package Package A. A selection page starts

with a link to the file belonging to the next-higher level, which can be the title page

or another selection page, and the overview of the element’s name and coverage results

measured for it. The rest of the page is a list as described above with the structural

elements on the next deeper level. Each of these elements is linked to a file of the next

deeper level. It the level of the current page is last but one, the linked file is a code page,

otherwise it is a selection page of the next deeper level.

2.6.1.4 Code page

Each code page starts with a link to the file belonging to the next higher level, which can

be the title page or a selection page, the name of the current element and the overview

of the coverage results for the current element (e.g. a class in Java).

At the bottom of the page is the source code belonging to this element. If condition

coverage↗ is activated, a table with the covered boolean expressions is written after each

condition.

Between the code and the overview stands a list as described above with the deepest

structural elements of the programming language provides (e.g. methods in Java). Each

item of the list provides a link to an anchor in the corresponding line in the code.

CodeCover- Specification 57

2.6.1.5 Implementation for Java and COBOL

For Java software, the title page lists the packages of the project↗ and links to selection

pages. Each selection page belongs to a package. This selection pages link to code pages.

Each code page belongs to a class. In each code page is a list of the methods in the

corresponding class.

For COBOL software, the title page lists the sections of the program. There are no

selection pages. Each entry of the list on the title page links to one code page. The code

pages contain no list, because there are no next-deeper elements than sections.

2.7 Instrumentation, types of coverage and measure-

ment

2.7.1 Instrumentation process

The instrumentation↗ process uses instrumentable files as input, adds additional coun-

ters at all code elements of interest and saves the instrumented code file↗ in a given

target folder. Where these counters are placed and how they are used must be clarified

in the software design.

When using Eclipse for the instrumentation process, all instrumented code files of a

Eclipse project are persistently saved in a sub folder of the plug-in’s properties folder

of the project. Moreover the compiled instrumented code files are stored in a bin folder

too.

Saving these already instrumented and compiled files allows Eclipse to execute an entry

point↗ of the Eclipse project and using an already created code base↗. So not every

instrumentation process creates a new code base↗.

Code files that are not Used For Coverage Measurement (see section 2.3.4.1)

are compiled into a folder, where the compiled instrumented files are stored as well.

Moreover, non-code files of the original source folder are copied too. This is done to

emulate the original bin folder when measuring the coverage. If these files are too big,

meaning there is insufficient free disk space, the standard message for insufficient disk

space is shown in Eclipse (if the Actor uses the Eclipse plug-in) or an error message is

written in the console to informs the user about this problem asking him to resolve it.

CodeCover- Specification 58

This can also happen if the space is not enough to compile the instrumented source files

or to write the report.

2.7.2 Statement coverage

Statement coverage is defined in the glossary shipped with this specification↗. Also basic

statement↗ is defined there generically.

For Java basic statement is according to the Java Grammar4:

• return [Expression] ;

• throw Expression ;

• StatementExpression ;

• break [Identifier] ;

• continue [Identifier] ;

In COBOL, everything that is (according to the COBOL grammar for JavaCC5) matched

by void Statement() except void IfStatement() and void PerformStatement() is

counted as a statement.

In general, statement coverage is defined as a percentage that is calculated as follows for

the instrumented part of the SUT:

number of covered basic statements

total number of basic statements

2.7.3 Branch coverage

Branch coverage is defined in the glossary shipped with this specification.

If the programming language of the SUT supports exception handling, the branches

implied by the possible exceptions are excluded from the branch coverage↗ calculations

but explicit try-catch blocks are treated as branches: one for running without an

exception and one for every catch statement.

Branch coverage is defined as a percentage that is calculated as follows for the instru-

4http://java.sun.com/docs/books/jls/third_edition/html/syntax.html
5http://mapage.noos.fr/~bpinon/cobol.jj

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html
http://mapage.noos.fr/~bpinon/cobol.jj
http://java.sun.com/docs/books/jls/third_edition/html/syntax.html
http://mapage.noos.fr/~bpinon/cobol.jj

CodeCover- Specification 59

mented part of the SUT:
number of covered branches

total number of branches

2.7.4 Condition coverage

2.7.4.1 General view

Condition coverage and strict condition coverage↗ are defined in the glossary shipped

with this specification.

The software uses the strict condition coverage but it is intended that other condition

coverage criteria can be adapted with small effort (see section 4.11).

In general, strict condition coverage is defined as a percentage that is calculated as

follows for the instrumented part of the SUT:

number of covered basic boolean terms

total number of basic boolean terms

There are some characteristics handling condition coverage for the Java and COBOL

programming language. They are considered in the next sections.

2.7.4.2 Short-circuit operators

Some languages, e.g. Java, provide so called short-circuit boolean operators: the operands

are only evaluated as far as they could affect the result of the whole expression. For

example, as || is the short-circuit logical OR operator in Java, if A in (A || B) is true,

B is not evaluated at all. To cover A, it must be once false while B is false, and once true

while the value of B does not matter since it is not evaluated.

If the normal logical OR operator | was used, (A | B), B would be required to stay false

in both cases for A to be covered.

2.7.4.3 Java ternary operator

There are two different cases in handling the Java ternary operator (A ? B : C) in

conditional expressions.

If the operator is used as a boolean term in a conditional expression, as in

if (x > 5 ? isA() : y == 7) {...},

CodeCover- Specification 60

A, B and C are considered separate coverable items. The use in the conditional expression

implies that B and C are boolean expressions themselves. The coverage is determined

based on the same criteria as described above: the whole expression must change if the

covered basic boolean term is changed, while the other boolean terms stay the same, as

far as they are evaluated. That is:

• to cover A, B has to be the opposite of C, otherwise the change of A would not

affect the whole expression,

• to cover B, A must stay true, C may have any value since is not evaluated and B

must evaluate both to true and false,

• to cover C, A must stay false, B may have any value since it is not evaluated and C

must evaluate both to true and false.

In all other cases, the ternary operator does not affect the condition coverage. For

example, in

if (i == (foo ? 2 : 3)) {..},

the expression i == (foo ? 2 : 3) is a single basic boolean term.

2.7.4.4 COBOL boolean abbreviations

COBOL provides abbreviations in boolean expressions, e.g. IF A = 3 OR = 7. These

abbreviations are converted to their long form, in the example IF A = 3 OR A = 7, and

checked the usual way: to achieve full strict condition coverage, A = 3, A = 4 and A =

7 would be sufficient.

2.7.5 Loop coverage

Loop coverage is defined in the glossary shipped with this specification.

Loop coverage does not consider elements of the source code as coverable items↗ but

the number of times the loop body is entered. The coverable items are:

• loop body is not entered

• loop body is entered once, but not repeated

• loop body is repeated more than one time

CodeCover- Specification 61

Looping statements like do-while cannot be bypassed and have only two possible cover-

able items.

In general, loop coverage is define as a percentage that is calculated as follows for the

instrumented part of the SUT:

number of covered coverable items

total number of coverable items

2.7.6 Coverage measurement

The process of the coverage measurement needs the instrumented code files↗. They are

compiled together with the uninstrumented code files. When the instrumented SUT is

executed, a coverage log↗ is produced. This log contains counters for all instrumented

statements and code elements.

The name of the log file can have one of the following formats:

coverage-log.clf

or

coverage-log-yyyy-MM-dd-HH-mm-ss-SSS.clf

The date and time refer to the start of the coverage measurement. An ex-

ample is coverage-log-2007-06-07-09-48-12.clf.

If a file with the given name still exists, it is not overwritten, but the name of the new

file is extended by (1), (2) and so on. The instrumenter can make the instrumented

SUT to support additional parameters that the tester can specify a path of the coverage

log file or enable overwriting – e.g. environment variables or system properties for Java.

2.7.7 Coverage analysis

The coverage log↗ file is processed in the analysis period. For this purpose, the Eclipse

user can use the analyze coverage log use case (see section 2.3.4.6) or the complete

instrumentation↗, execution and analysis use case (measure coverage, section 2.3.7).

The shell user can use the command codecover analyze (see section 2.4.7).

The result of the analysis process is a test session, that could be used for report generation

(see section 2.3.7) or coverage analysis (see section 2.3.5.2).

CodeCover- Specification 62

2.8 Language support

The software can show all texts used in the Eclipse plug-in as well as in the reports in any

language of which all needed characters are part of the Unicode standard. All releases

will be delivered in German and English localizations. The default Eclipse language

support for plug-ins is used.

The Eclipse plug-in tries to use the language Eclipse uses, taking English if it can’t

find an appropriate language setting. The language used in reports, on the other hand,

results from the template files which not only define the layout but also set every string

used in the report outputted by CodeCover .

The batch interface is English only.

2.9 JUnit integration

2.9.1 Preface

The term test case can be mixed up in this section. For this reason we distinguish the

terms JUnit test case and test case↗ in the understanding of this software.

The phrase a test case failed will be used in the meaning that a test case had an unex-

pected behaviour or causes an error.

2.9.2 Basic concepts

Till now, only the manually added method calls can set the start and the end of a test

case:

Protocol.startTestCase("JUnit Test 1")

This rudimentary test case notification mechanism for Java will be enhanced. Therefore

JUnit6 will be integrated in the software. Thereby the software is informed about the

start and the end of JUnit test cases while the instrumented SUT is running.

6http://www.junit.org

http://www.junit.org
http://www.junit.org

CodeCover- Specification 63

It must be configurable whether to use the JUnit test cases or the test methods as test

cases in the understanding of the software. This must be decidable for each JUnit test

run. The test cases of the SUT need not to be instrumented or changed for this feature.

To support these features, the software must log static information of the JUnit test

cases and observe its run. This includes for each test case:

• the name of the related JUnit test case class

• the names of the test methods of the JUnit test case

• whether the test methods of the JUnit test case failed or not

• if a test method failed, which failure respectively error was the reason

• the date and time of the execution

• the belonging code coverage↗ results

If a JUnit test case is used as a test case, the test case has to store all test methods of

the JUnit test case. The related test case is marked as failed if at least one test method

hast failed.

If the test methods of a JUnit test case are used as test cases, the test case name must

have an unique name to identify the test method.

All the data collected must be stored in the coverage log↗ file, cause this is the only

result of the coverage measurement phase.

2.9.3 Compatibility

The approach must be compatible to:

• the JUnit 3.8.x family

• the JUnit 4.x family

• the Eclipse plug-in family: org.junit_3.8.x

• the Eclipse plug-in family: org.junit4_4.x

This means, that the JUnit integration works with all four families and allows the features

described above.

CodeCover- Specification 64

The implementation of the JUnit integration must be compatible to the Java version

of the supported JUnit family – e.g. the implementation of the support for JUnit 3.8.x

must be compatible to Java 1.4. For this reason the software supports test case execution

for older systems, that still rely on Java 1.4.

2.9.4 Report

The additional JUnit test case information are added to the report. See section 2.6.1.2.

2.10 ANT integration

2.10.1 Preface

CodeCover provides an Apache ANT7 integration.

The CodeCover ANT integration will provide a codecover command which will have

subcommands as its content, i.e. an example will look like:

<target name="foo">

<codecover>

<subcommand1 param1="bar" param2="foobar" />

<subcommand2>

<someElement param="42" />

</subcommand2>

</codecover>

</target>

2.10.2 Subcommand overview

The following subcommands are available:

Target Description

load load a session container

7http://ant.apache.org/

http://ant.apache.org/
http://ant.apache.org/

CodeCover - Specification 65

Target Description

save save a session container

createContainer creates a new container

instrument Instrumentation↗ of code files↗

analyze Analysis of a coverage run to create a test session

report Generating a report from a test session

mergeSessions Merging two or more test sessions

alterSession Altering test session information

copySessions Copy test sessions from one session container to another

removeSessions Removing test sessions from a session container

mergeTestCases Merging two or more test cases

alterTestCase Editing test case information

removeTestCases Removing test cases from a session container

2.10.3 load

This subcommand loads a session container. The loaded session container then can be

used in future subcommands.

Syntax:

<load containerId="..." filename="..." />

Attribute Required Description

containerId • An ID assigned to the loaded container. This ID can

later be used to reference this container.

filename • The file to load. If filename is a relative filename, it

will be interpreted relative to the project’s basedir.

2.10.4 save

This subcommand saves a session container.

Syntax:

CodeCover - Specification 66

<save containerId="..." filename="..." override="..." />

Attribute Required Description

containerId • The ID of a container which will be saved.

filename • The name of the new file. If filename is a relative

filename, it will be interpreted relative to the project’s

basedir.

override If this attribute is true, an existing file will be overrid-

den. Defaults to true.

2.10.5 createContainer

This subcommand creates a new test session container using the static information from

another container.

Syntax:

<createContainer oldContainerId="..." newContainerId="..." />

Attribute Required Description

oldContainerId • The ID of a container.

newContainerId • An ID assigned to the newly created container. This ID

can later be used to reference this container.

2.10.6 instrument

This subcommand instruments source code.

Syntax:

<instrument containerId="..." language="..." instrumenter="..."

destination="..." charset="..." copyUninstrumented="..." override="...">

<source ...>

...

</source>

CodeCover- Specification 67

<criteria>

<criterion name="..." />

<criterion name="..." />

...

</criteria>

</instrument>

Attribute Required Description

containerId • An ID assigned to the newly created container. This ID

can later be used to reference this container.

language • The name of the programming language.

instrumenter • The full name of the instrumenter to use. TODO: This

appears in the batch specification; it however

is not implemented. What is this for? Is this

option really required?

Yes!

destination • The destination directory for the instrumented files. If

destination is a relative filename, it will be interpreted

relative to the project’s basedir.

charset The character encoding of the source files. If none is

given, the system default will be used.

copyUninstrumented If this attribute is true, all non-instrumented files in the

root directory will be copied to the destination. Defaults

to false.

override If this attribute is true, existing files will be overridden.

Defaults to true.

Element Required Description

source • A fileset8 pointing to the files to instrument. The root

directory of the fileset has to point to the root directory

of the source files.

criteria A list of criteria to be used for instrumentation. If this

element isn’t given, all criteria will be used.

8http://ant.apache.org/manual/CoreTypes/fileset.html

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

CodeCover - Specification 68

2.10.7 analyze

This subcommand takes the information from a coverage log and writes it into a session

container.

Syntax:

<analyze containerId="..." coverageLog="..."

name="..." comment="..." charset="..." />

Attribute Required Description

containerId • The ID of a container in which the information will be

written.

coverageLog • The coverage log file. If coverageLog is a relative file-

name, it will be interpreted relative to the project’s

basedir.

name • The name of the new test session.

comment The comment for the new test session. If none is given,

the comment is empty.

charset The character encoding of the coverage log. If none is

given, the system default will be used.

2.10.8 report

This command creates a report containing information about test cases.

Syntax:

<report containerId="..." destination="..."

template="..." override="...">

<testCases>

<testSession name="...">

<testCase pattern=".*" />

</testSession>

<testSession pattern="foo.*bar">

CodeCover - Specification 69

<testCase pattern=".*" />

</testSession>

<testSession name="...">

<testCase name="..." />

<testCase name="..." />

<testCase name="..." />

</testSession>

</testCases>

</report>

Attribute Required Description

containerId • The ID of a container in which the information will be

written.

destination • The destination file for the report. If destination is

a relative filename, it will be interpreted relative to the

project’s basedir.

template • The template file. If template is a relative filename, it

will be interpreted relative to the project’s basedir.

override If this attribute is true, existing files will be overridden.

Defaults to true.

Element Required Description

testCases • The test cases to use in the report. This element is

described in 2.10.17

2.10.9 mergeSessions

This command merges multiple sessions in a session container into one session.

Syntax:

<mergeSessions containerId="..." name="..." comment="..."

removeOldSessions="...">

<testSessions>

CodeCover- Specification 70

<testSession name="..." />

<testSession pattern="foo.*bar" />

</testSessions>

</mergeSessions>

Attribute Required Description

containerId • The ID of a container of the used container.

name • The name of the new test session.

comment The comment for the new test session. If none is given,

the comment is empty.

removeOldSessions If this attribute is true, the original test sessions will be

removed. Defaults to false.

Element Required Description

testSessions • The test sessions to merge. This element is described in

2.10.16

2.10.10 alterSession

This command modifies the name and/or the comment of a test session.

Syntax:

<alterSession containerId="..." session="..." name="..." comment="..." />

Attribute Required Description

containerId • The ID of a container of the used container.

session • The old name of the test session.

name The new name of the test session. If none is given, the

name will not be changed.

comment The new comment for the test session. If none is given,

the comment will not be changed.

CodeCover- Specification 71

2.10.11 copySessions

This command will copy session from one session container into another.

Syntax:

<copySessions sourceContainerId="..." destinationContainerId="..."

removeOldSessions="...">

<testSessions>

<testSession name="..." />

<testSession pattern="foo.*bar" />

</testSessions>

</copySessions>

Attribute Required Description

sourceContainerId • The ID of the container of copy from.

destinationContainerId • The ID of the container to copy to.

Element Required Description

testSessions • The test sessions to copy. This element is described in

2.10.16

2.10.12 removeSessions

This command remoces sessions from a session container.

Syntax:

<removeSessions containerId="...">

<testSessions>

<testSession name="..." />

<testSession pattern="foo.*bar" />

</testSessions>

</removeSessions>

CodeCover- Specification 72

Attribute Required Description

containerId • The ID of a container to remove sessions from.

Element Required Description

testSessions • The test sessions to remove. This element is described

in 2.10.16

2.10.13 mergeTestCases

This command merges multiple test cases in a session into one test case.

Syntax:

<mergeTestCases containerId="..." name="..." comment="..."

removeOldTestCases="...">

<testCases>

<testSession name="...">

<testCase pattern="foo.*bar" />

<testCase name="..." />

<testCase name="..." />

<testCase name="..." />

</testSession>

</testCases>

</mergeTestCases>

Attribute Required Description

containerId • The ID of a container of the used container.

name • The name of the new test case.

comment The comment for the new test case. If none is given, the

comment is empty.

removeOldTestCases If this attribute is true, the original test cases will be

removed. Defaults to false.

CodeCover - Specification 73

Element Required Description

testCases • The test cases to merge. This element is described in

2.10.17. The list has to contain exactly one test session.

This session will also contain the new test case.

2.10.14 alterTestCase

This command modifies the name and/or the comment of a test case.

Syntax:

<alterTestCase containerId="..." session="..." testCase="..." name="..."

comment="..." />

Attribute Required Description

containerId • The ID of a container of the used container.

session • The name of the test session.

testCase • The old name of the test case.

name The new name of the test case. If none is given, the

name will not be changed.

comment The new comment for the test case. If none is given, the

comment will not be changed.

2.10.15 removeTestCases

This command remoces sessions from a session container.

Syntax:

<removeTestCases containerId="...">

<testCases>

<testSession name="...">

<testCase pattern=".*" />

</testSession>

<testSession pattern="foo.*bar">

CodeCover- Specification 74

<testCase pattern=".*" />

</testSession>

<testSession name="...">

<testCase name="..." />

<testCase name="..." />

<testCase name="..." />

</testSession>

</testCases>

</removeTestCases>

Attribute Required Description

containerId • The ID of a container to remove test cases from.

Element Required Description

testCases • The test cases to remove. This element is described in

2.10.17

2.10.16 List of test sessions

A testSessions element contains a list of testSession elements. Each testSession

element has either a name attribute, which gives the exact name of the test session

it matches, or a pattern attribute, which gives a Java regular expression which test

sessions names it will match.

So e.g.

<testSessions>

<testSession name="42" />

<testSession name="23" />

<testSession pattern="foo.*bar" />

</testSessions>

will match the session with the name“42”, the session with the name“23”and any session

starting with “foo” and ending with “bar”.

CodeCover - Specification 75

2.10.17 List of test cases

A testCases element contains a list of testSession elements (as described above),

however here each testSession element contains a list of testCase elements. Each

testCase element has either a name attribute, which gives the exact name of the test

case it matches, or a pattern attribute, which gives a Java regular expression which test

cases names it will match.

So e.g.

<testCases>

<testSession name="foo">

<testCase pattern=".*" />

</testSession>

<testSession pattern="foo.*bar">

<testCase pattern=".*" />

</testSession>

<testSession name="42">

<testCase name="1" />

<testCase name="2" />

<testCase name="3" />

</testSession>

</testCases>

will contain all test cases from the test session “foo”, all test cases from test sessions

which names start with “foo” and end with “bar” and the test cases “1”, “2” and “3” from

the test session “42”.

2.10.18 Examples

2.10.18.1 Instrumentation

<codecover>

<instrument containerId="container" language="java"

destination="instrumented" charset="utf-8" copyUninstrumented="true">

<source dir="src">

CodeCover - Specification 76

<include name="**/*.java" />

</source>

<criteria>

<criterion name="st" />

<criterion name="br" />

</criteria>

</instrument>

<save containerId="container" filename="container.xml" />

</codecover>

This will instrument all java files in the directory src, write the result into instrumented

and use statement and branch coverage. The resulting test session container will be

written into container.xml.

2.10.18.2 Analysis

<codecover>

<load containerId="container" filename="container.xml" />

<analyze containerId="container" coverageLog="coverage.log"

name="New Test Session" />

<save containerId="container" filename="container.xml" />

</codecover>

This will write the content of coverage.log into container.xml into a new test session

called “New Test Session”.

2.10.18.3 Reporting

<codecover>

<load containerId="container" filename="container.xml" />

<report containerId="container" destination="report.html"

template="HTML_Report_hierarchic.xml">

<testCases>

<testSession pattern=".*">

<testCase pattern=".*" />

</testSession>

</testCases>

CodeCover- Specification 77

</report>

</codecover>

This will create a report in report.html containing all test cases from the test session

container container.xml using the template in HTML_Report_hierarchic.xml.

2.11 Live Test Case Notification

The live test case notification feature provides a way to manually define test case borders

during the execution of the instrumented SUT without manually modifying either the

test cases or the SUT before instrumenting or compiling. Additionally, this feature can

be used to automatically download the created coverage log files from a remote SUT,

for example, a web application.

Live test case notification is available for Java SUTs only.

The communication between the instrumented SUT and CodeCover is carried out using

the Java Management Extensions (JMX)9 remote protocol over Java RMI over TCP. As

JMX is generally protocol-independent, support for other protocols can be added in the

future; this is, however, beyond the scope of the CodeCover project.

2.11.1 Basic principle of operation

JMX uses a client/server model to enable management and monitoring of a Java applica-

tion. The target Java application (the SUT) acts as a server. As long as the application

is being executed, one or more clients can connect to it, query property values and ini-

tiate operations exposed by the server. The communication model and infrastructure is

defined in the JMX specification and implemented in most major JRE Version 5 or later

distributions as well as in both open source and commercial products and libraries. The

target application only needs to provide its specific management functionality by creat-

ing objects that adhere to a particular interface and naming convention (called MBeans

in JMX terminology) and registering them with a MBean Server which is provided by

the JMX implementation.

9http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

CodeCover- Specification 78

During the instrumentation process of the SUT, a MBean class is added to the SUT

along with the standard measurement classes. When the SUT starts and the coverage

logging facilities are initialized, an object of this class is created and registered with

the MBean Server. If the SUT was started in a JVM which supports remote JMX,

operations and properties of the CodeCover MBean are automatically exported to the

network interface. At the time of this writing, remote JMX is not enabled by default but

can be simply enabled by setting special system properties at startup of the JVM. The

procedure of enabling remote JMX on major JREs is to be documented in the user’s

manual.

The CodeCover client, which is a part of the CodeCover Eclipse plug-in, connects to

the JMX server in the SUT’s JVM and executes operations on the MBean as requested

by the Eclipse user. These operations trigger test case notification information to be

written into the coverage log file.

It is assumed that only one client accesses the instrumented SUT via remote JMX.

Concurrent accesses are not supported as they wouldn’t have any meaningful semantics.

2.11.2 MBean Interface

The MBean exports the following properties and operations to remote clients:

1. An operation to start a test case with a name and to end a test case. These

operations correspond to methods described in section 2.1.

2. An operation which instructs the measurement classes to finish the coverage logging

and close the coverage log file.

3. A read-only property that contains the file name of the current coverage log file.

4. An operation which allows the client to download the contents of the current

coverage log file.

2.11.3 Application life cycle issues

2.11.3.1 Java SE applications

In standard Java SE applications, the MBean is initialized together with the rest of the

coverage logging classes.

CodeCover- Specification 79

2.11.3.2 Web applications

The MBean must be registered with the MBean Server when the web application is

initialized and unregistered when the application shuts down. Since the application

startup and shutdown times are not necessarily identical with the application container’s

ones, some interaction with the application container is necessary to get the notifications

on startup and shutdown.

This is done by installing a context listener into the web application context. Context

listeners are part of the servlet specification10 since version 2.3. CodeCover provides a

generic context listener class which registers and unregisters the required MBean.

The user is only required to add a generic context listener declaration to the deployment

descriptor (web.xml) of the SUT. This process is described in the user’s manual.

Moreover, as the MBean is initialized with the application and a MBean Server might be

initialized together with the container, a connected client is required to listen for MBean

registration and deregistration events on the MBean Server and behave accordingly to

the current MBean status.

10http://java.sun.com/products/servlet/index.jsp

http://java.sun.com/products/servlet/index.jsp
http://java.sun.com/products/servlet/index.jsp

CodeCover- Specification 80

3 Graphical User Interface

3.1 Package and file states

The instrumentable items↗ (e.g. packages or source code files↗) are presented in one of

two states: normal and used for coverage measurement. The following table shows the

icons for different instrumentable items in these states.

Object normal used for coverage measurement

Package

Java file

The user can change the state of an instrumentable item by selecting the Use For Cov-

erage Measurement menu item in the context menu of an instrumentable item (e.g.

in the JDT’s Package Explorer or the generic Navigator). Use for Coverage

Measurement is a check box menu item so that a second selection of this menu item

removes the instrumentable item from coverage measurement.

Figure 3.1: Package selection

CodeCover- Specification 81

3.2 Instrumentation

The Instrument Project. . . item is added to the Project menu. This command

opens the dialog window which is shown in figure 3.2.

Figure 3.2: Instrumentation dialog

3.3 Launching

The software adds a new launch mode to the Eclipse workbench. This mode is called

Coverage mode and works exactly like the existing Run and Debug modes. Figure 3.3

shows the pull down menu of the Coverage Button on the tool bar. The menu items

Coverage History, Coverage As and Coverage. . . are added to the Coverage

CodeCover- Specification 82

menu.

The Coverage. . . option opens the Coverage dialog which is similar to the Run

dialog, except that the Run button in that dialog is called Coverage.

Figure 3.3: Coverage button

3.4 Coverage view

The coverage results are presented in the Coverage view. It displays the results of

statement↗, branch, condition and loop coverage↗ per project↗, package, class (includ-

ing interfaces and enums) and method. This view is shown in figure 3.4.

Figure 3.4: Coverage view

A grey bar is shown left of a coverage result if there are no coverable items↗ of the

associated coverage criterion↗ in the associated Element.

CodeCover- Specification 83

The check box in the upper-left corner of the view enables a simple filter if checked.

If the filter is activated only methods with a coverage result smaller, smaller or equal,

greater, greater or equal than a given percentage are shown in the coverage view. The

coverage criterion to compare with can be selected in the most left combo box in the

view. The operator to compare the coverage result with can be selected in the combo

box right of the combo box of the coverage criteria. The percentage to compare with

can be entered in the field right of the combo box of the comparison operators.

The tool bar items in the upper-right part of the view provide the possibility to select

Java elements shown as root entries in the element column. Possible root entries are

projects, packages, classes (including interfaces, enums and annotations) and methods.

3.5 Test sessions view

The Test Sessions view lists the test sessions↗ of the selected session container↗.

Figure 3.5 shows an example of this view. A session container can be chosen using the

combo box. The session container list entries display the date and time along with the

associated project↗.

Figure 3.5: Test Sessions view

The check box in front of each row determines whether a Test Element is activated.

The coverage results of activated Test Elements are visualized by the views of the

plugin (e.g., Coverage view) and the source code highlighting. The visualizations are

CodeCover- Specification 84

automatically refreshed as the user activates or deactivates particular Test Elements.

By default, all Test Elements are activated.

The activation or deactivation of a test session activates or deactivates all test cases of

this test session. For test sessions the check box has an additional state, partly activated.

This state is visualized by the crossed out check box in figure 3.5 and means that at

least one test case of a selected test session is deactivated.

The information about the set of active (visualized) Test Elements is stored; that is,

selecting a new session container does not change the set of the active Test Elements

of the previous session container.

The tool bar items represent following commands (from left to right):

• Delete Test Session Container

– Delete Multiple Containers

• Merge

• Delete

Delete Test Session Container deletes the active session container. Prior to the

actual deletion the user has to confirm his intent to do so. By using the drop-down menu

of the Delete Session Container item, the user can reveal the item for the deletion

of multiple session containers: Delete Multiple Containers. It opens a dialog that

prompts the user to select the session containers to delete and performs the deletion

after the user confirmed the selection. The item Merge allows the user to merge the

selected test elements. On selection of this item a dialog pops up which prompts the

user to select the type of test element (test cases or test sessions) to merge and prompts

the user to enter a name and comment for the merged test element. Furthermore the

user is able to review and change the set of test elements to merge. The Delete item

deletes the selected test elements, whereas the user is asked for confirmation before the

deletion is performed.

The Test Elements have a context menu which contains following items:

• Select All

• Activate All

• Deactivate All

• Delete

CodeCover- Specification 85

• Properties

The item Select All selects all test elements of the active session container to be able

to delete them all at once for example. Activate All and Deactivate All activate

or respectively deactivate all test elements of the active session container. The item

Delete evokes the same action as described above. The Properties item opens a

dialog which allows the user to edit the properties of the selected Test Element. The

Test Case Properties dialog is shown in figure 3.6. It is possible to change the name

of the selected Test Element. Furthermore, a multi line comment may be entered.

Figure 3.6: Test case properties

3.6 Import

The software extends the standard Eclipse Import interface by adding two entries to

group CodeCover , Test Session Container and CodeCover Coverage Log. Fig-

ure 3.7 shows the correspondent Import wizard page. This dialog allows the user to

select a session container↗ and a project↗ into which the session container will be im-

ported. The file extensions used in the following dialogs are examples.

Selecting CodeCover Coverage Log proceeds with the wizard page shown in figure

3.8. This import operation requires the coverage log↗ file, created while running the

instrumented program. Moreover the user has to select the session container the coverage

log will be imported to and enter a name and comment for the new test session that will

contain the data of the coverage log.

CodeCover- Specification 86

Figure 3.7: Import Test Session Container

CodeCover- Specification 87

Figure 3.8: Import Coverage Log

CodeCover- Specification 88

3.7 Export

The item CodeCover Coverage Result Export is added to the Other group of

standard Eclipse Export dialog. The respective wizard page is shown in figure 3.9.

The dialog contains the list of all available test sessions↗ in the selected code base. The

list Available Test Sessions allows multiple selections. The code base can be chosen

from the combo box. By default, the last code base or the code base which is used in

the Test Sessions view is preselected.

Figure 3.9: Export Test Session

CodeCover- Specification 89

Possible export types are CodeCover Session Container and Report. The report type

has an extra wizard page which allows the user to select a report template (figure 3.10).

Figure 3.10: Report dialog

3.8 Source code highlighting

3.8.1 General

This section describes the visualization of coverage results by highlighting the source code

of the SUT↗. There are three different colors for displaying the state of a particular part

of code. The default color scheme uses green for “covered”, yellow for “partly covered”

CodeCover- Specification 90

and red for “not covered”. All these colors are configurable (see section 3.9). Throughout

this section, the default colors are used to explain the details of the highlighting.

Statement coverage is shown by highlighting the statements↗. To display branch cov-

erage↗, the keywords of conditional statements↗ are highlighted. Condition coverage

is represented by coloring each basic term of a condition with green or red. For loop

coverage↗, the keywords of looping statements are highlighted. All examples in this

section show source code highlighting with all coverage criteria.

3.8.2 Java

3.8.2.1 Basic statements

Basic statements are completely highlighted either green or red, for covered and not

covered statements, respectively.

3.8.2.2 Conditional statements

3.8.2.2.1 If-then-else statements

The following list describes the meaning of the background color of the if keyword:

• Green: Both branches are covered.

• Yellow: Only the then-branch is covered.

• Red: Only the else-branch is covered.

Figure 3.11 illustrates the different possibilities of if-then coverage. If the branching

statement is not evaluated because it is not executed, it is also highlighted with red

color.

Figure 3.11: If-then statements

The background color of else keyword has the following meanings:

• Green: The else-branch is covered.

• Red: The else-branch is not covered.

CodeCover- Specification 91

Figure 3.12: If-then-else statements

Example highlighting of if-then-else statements is shown in the figure 3.12. The left

picture represents full statement, branch and condition coverage↗. In the middle picture

only the then-branch and in the right one only the else-branch is covered.

An if-then-else statement can be nested in another if-then-else statement. In that case

the same color scheme as described above is applied. Figure 3.13 shows some examples

for nested if-then-else statements.

Figure 3.13: Nested if-then-else statements

3.8.2.2.2 Switch statements

The following list describes the highlighting scheme for the switch keyword:

• Green: All cases are covered.

• Yellow: Some cases are covered, but at least one case is not covered.

• Red: No case is covered.

If the default section of the switch statement is not covered the switch keyword is

highlighted as partly covered (yellow) as well. The highlighting is independent from the

fact that the default section can be omitted. Figure 3.14 shows a sample highlighted

switch statement with a default section.

For every case the keyword case and the constant are highlighted the following:

• Green: The case is covered.

• Red: The case is not covered.

CodeCover- Specification 92

If the default section is not omitted, the keyword default is highlighted the same way

as cases.

Figure 3.14: Switch-statement with some cases and a default section

3.8.2.3 Looping statements

3.8.2.3.1 General

The keywords of looping statements (while, for and do-while) are highlighted as spec-

ified in the following list. The loop coverage↗ is defined in section 2.7.5.

• Green: Loop body is covered (fulfill all requirements of loop coverage).

• Yellow: Loop body is partly covered (at least one requirement of loop coverage,

but not all requirements).

• Red: Loop body is not covered at all.

3.8.2.3.2 While loops

Figure 3.15 shows full, partly and not covered while loops (from left to right).

Figure 3.15: Highlighting of while loops

3.8.2.3.3 Do-while

Do-while loop is represented similar to the while loop; only the while keyword is high-

lighted. The colors are the same (see figure 3.16).

3.8.2.3.4 For

The coverage results of for loops are visualized in the same way as those for while

loops. Samples of highlighted for loops are shown in the figure 3.17.

CodeCover- Specification 93

Figure 3.16: Do-while statements

Figure 3.17: For statements

3.8.3 COBOL

3.8.3.1 Basic statements

Basic statements like DISPLAY, ACCEPT or COMPUTE are highlighted with green and red

for covered and not covered statements, respectively.

3.8.3.2 Conditional statements

3.8.3.2.1 If-then-else statements

The highlighting scheme for if-then-else statements is completely analogous to that of the

corresponding statements in Java described above. Figure 3.18 shows the highlighting

of an if-then statement in the COBOL programming language:

Figure 3.18: If-then statements in COBOL

3.8.3.2.2 Evaluate statement

The EVALUATE statement is the counterpart of the Java switch statement. Therefore

analogous highlighting rules are applied for this statement. Figure 3.19 shows an example

of the EVALUATE statement highlighting:

CodeCover- Specification 94

Figure 3.19: Evaluate statement

3.8.3.3 Looping statements

3.8.3.3.1 Perform

The PERFORM statement is overloaded and can be used as a basic statement↗ to jump

to a particular paragraph (e.g. as in figure 3.19) as well as a loop statement. Figure

3.20 shows a while-equivalent statement and figure 3.21 a do-while-equivalent one. The

highlighting rules for the while and do-while loops in Java apply accordingly.

Figure 3.20: Perform statement with test before

Figure 3.21: Perform statement with test after

3.9 Preferences dialog

The CodeCover entry in the Preferences dialog contains Eclipse-wide options for

configuring the software. This dialog page is shown in figure 3.22.

TODO: adopt this fully to standard dialog for annotations. Picture

may be made when it’s coded. The dialog provides a list of annoations to configure.

For each of the four metrics there are three annotations: fully covered, partly covered, not

covered. For each annotation the color can be selected using the standard mechanisms

of Eclipse. A partly covered state is not produced by the default metrics for basic

CodeCover- Specification 95

Figure 3.22: Preferences dialog

statements, basic boolean terms and branches. However as these may very well be

produced by add on metrics there are also options to configure their color.

CodeCover- Specification 96

3.10 Project properties dialog

In the Properties dialog of a project↗ a CodeCover entry is added. On this page,

the user can activate codecover for the project. If codecover is activated the selection of

coverage criteria which are to be measured for the project is enabled too. Figure 3.23

shows this dialog page.

Figure 3.23: Project properties dialog

CodeCover- Specification 97

3.11 Correlation Matrix

3.11.1 Mathematic prelude

The Correlation Matrix shows the correlation between test cases of a single test-

session-container. Every test case contains a set of coverable items, which represents

those parts of the code, that were covered during an execution of the instrumented

system under test. Those sets are defined as follows:

CT := {x|x ∈ T ∧ x ∈ CoverableItems ∧ x ∈ covered} (1)

Correlation between two test cases T1, T2 is then defined as:

KU,V :=
| U ∩ V |
| V |

(2)

with U = CT1 and V = CT2 .

Using this definition of correlation a partially ordered set R can be defined:

R = {(U, V) ∈ C × C : KU,V = 1} (3)

In words this means, that two test cases T1, T2 are in relation R, if, and only if, T1 contains

all the coverable items T2 does(or possibly more), which would make T2 superfluous. This

partially ordered set then allows to detect and establish subsumption chains, in which

one test cases completely contains another and so forth.

Proof that R is a partially ordered set requires to proof that it possesses the following

three attributes:

1. reflexivity

(U,U) ∈ R⇔ | U ∩ U |
| U |

= 1⇔ | U |
| U |

= 1 (4)

2. antisymmetry

(U, V) ∈ R⇔ | U ∩ V |
| V |

= 1⇔ V ⊆ U (5)

(V, U) ∈ R⇔ | V ∩ U |
| U |

= 1⇔ U ⊆ V (6)

⇒ V ⊆ U ∧ U ⊆ V ⇒ U = V (7)

CodeCover- Specification 98

3. transitivity

(U, V) ∈ R⇔ | U ∩ V |
| V |

= 1⇔ V ⊆ U (8)

(V, W) ∈ R⇔ | V ∩W |
| W |

= 1⇔ W ⊆ V (9)

⇒ W ⊆ V ∧ V ⊆ U ⇒ W ⊆ U ⇔ | U ∩W |
| W |

= 1⇔ (U,W) ∈ R (10)

with T1, T2 and T3 being three test cases and U = CT1 , V = CT2 and W = CT3 .

Coverage View

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5 Test Case 6

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

0 %

0 % - 33%

33 % - 66%

66 % - 100%

100 %

I

Figure 3.24: Correlation View

3.11.2 Correlation View

Using the definitions from 3.11.1, the view in Eclipse is defined as shown in figure 3.24.

A tree is located on the left of the view. This tree shows the subsumption chains of test

cases defined in 3.11.1. All the children of a node in the tree are completely covered by

the node itself.

The correlation matrix is located on the right side of the view. It shows all the test

cases, that were used in the calculation of the correlation. The meaning of the colors is

CodeCover- Specification 99

explained in the legend situated to the right of the matrix. The matrix is to be read from

the left, e.g [test case left] covers [test case top] by [color value]%. A tooltip shown, when

hovering above one entry of the matrix, contains the exact percentage of correlation, as

well as the amount of total coverable items and shared coverable items.

The tool bar items represent following commands (from left to right):

• Export the currently displayed matrix data into a .csv file - This command exports

the data of the matrix into a comma seperated file.

• Hide top-level tree items with no children - This command hides all the top level

entries in the tree, which have no children, meaning they do not subsume any other

test case;

• Choose and calculate correlation - This command selects the metric to be used in

calculating the correlation, with the pull-down menu of the arrow and calculates

the correlation with a push on the button.

• Show Legend - This command shows or hides the legend.

• Automatically calculate correlation - If this command is toggled on, the correlation

is automatically recalculated, when the selection of test case is changed. It can be

switched off to improve performance.

The test cases, that are to be used in the calculation, are selected using the Test sessions

view. If the Automatically calculate correlation command is toggled on, every

change in the selection causes the correlation view to update its contents. Since this

can potentially be time-consuming, the Automatically calculate correlation

command can be toggled off and the Choose and calculate correlation command

can be used, after the desired selection was achieved.

3.12 Live Notification View

The Live Notification View is used to implement the Live Test Case Notification

(2.11). Two textfields are used to enter the hostname and port. The name of the test

case can be entered as well. Test cases can be started and stopped with two labeled

buttons. The test session can be finished with another button. The log file can be

retrieved with the “Download Coverage Log File” button. This also automatically stores

the data of log file in the test session container.

CodeCover- Specification 100

Figure 3.25: Live Notification

3.13 Boolean Analyzer

The Boolean Analyzer shows the boolean value of each basic boolean term, operator

term and the root term according to evaluations of the condition which are recorded

during the execution of the SUT. This data is presented in a table. The operators,

operands and brackets define the columns and the evaluations are shown as rows in the

table. In addition, a column for test cases is added. In that column one can see the test

cases which covered the evaluation and the number of execution.

Two table values of a column may contain green background. This represents that the

basic boolean term of that column is covered according to the strict condition coverage

criterion. If a column of a basic boolean term does not contain any colored values then

the term is not covered. Figure 3.26 shows the Boolean Analyzer.

There are two ways to select a condition in the Boolean Analyzer. First, there are

combo-boxes for classes and conditions. The second way is to select the keyword of

the condition in the source code, right-click, and select the ”Analyze Term” item in the

CodeCover- Specification 101

Figure 3.26: Boolean Analyzer

context menu, which will automatically select the condition in the Boolean Analyzer.

3.14 Hot-Path

The plugin displays line-wise execution counters corresponding to the currently selected

test cases. The measured number of executions of lines is added to the vertical ruler

of the java text editor via annotations with a color code. When the cursor hovers over

such a Hot-Path annotation a tooltip with the execution counter is shown.

If no basic statement is found in a line, then no color is shown for that line in the ruler.

Otherwise the color corresponding to the most often executed basic statement of that

line is shown.

The color code is a mapping from the execution count of one line (e) and the highest

exection count within a source file (emax) to the color to mark that line. It must be

encapsulated in a single method to make it easy to change in the source code. The

mapping is a linear blending between the colors given in the users preferences. The

exect mapping is: color(e, emax) = colormax ∗ (e/emax) + colornull(1− e/emax).

CodeCover- Specification 102

4 Non-functional requirements

4.1 Technologies and development environment

The following software is used for development:

• Java 5 SE

• Eclipse 3.3.x

• the customer’s COBOL-85 grammar 11

• Subversion 1.3.0 on the server for configuration management

• ArgoUML 0.22 for use case diagrams in the specification↗

• BOUML 2.21.5 or compatible for UML diagrams

The following technologies are used for development:

• LaTeX as document format

• UTF-8 for encoding text

• XML as the intermediate format for reports

• Java and COBOL-85 example programs

4.2 Requirements to the working environment

4.2.1 Software requirements

The following programs are required to use the software:

• Java version 5 or later

• Eclipse 3.3.x for all GUI functions

• PDF↗ viewer for documentation which supports at least PDF 1.4

• JUnit for automatic test case↗ recognition

11bruessel.informatik.uni-stuttgart.de:/home/export/bruessel/projects/stupro06/grammars/cobol.jj

CodeCover- Specification 103

• for COBOL support a COBOL-85 preprocessor to prepare code for instrumenta-

tion↗ and a compiler to compile the instrumented code

4.2.2 Hardware requirements

To support a wide installation base moderate hardware should be enough for using

the software. Exact minimum requirements must be determined based on the final

application.

The minimum hardware required is:

• 512 MiB 12 of RAM

• a CPU as powerful as an AMD Athlon with 1 GHz clock rate

• 100 MiB of free hard disk space for installation with Eclipse already installed, to

store working data and for some session containers↗

The following hardware is recommended:

• 1 GiB of RAM

• a CPU as powerful as single core AMD Athlon with 2 GHz clock rate

• 60 MiB/s read and write sequential transfer rate measured at file system level

• 10 GiB of free hard disk space to store working data and some coverage results

4.3 Quantity requirements

Quantities that have no defined maximum are only limited by the resources of the PC

the software runs on.

121 MiB = 220 Bytes

CodeCover- Specification 104

4.3.1 Program examples

4.3.1.1 Small program

Fred v1.3.5 RC213 is a small program. All functions of the software that dont’ work with

it are completely useless.

4.3.1.2 Medium program

Tomcat 5.5.2014 is a medium sized program. All functions of the software must work

with it.

4.3.1.3 Large program

Eclipse SDK 3.1.215 is a large program. Running functions on the large program is

sufficient to show that they work for any project↗ that must be supported.

4.3.2 Timestamp

Timestamps have a resolution of one minute or finer. The software must use a state of

the art representation of timestamps to support a sufficiently wide time period.

4.3.3 Text value

Text values are of arbitrary length and may contain any Unicode characters.

4.3.4 Test case

The name and the comment of a test case↗ are text values. The start time is a time

stamp.

13http://sourceforge.net/projects/fred
14http://tomcat.apache.org/download-55.cgi
15http://archive.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600/index.php

http://sourceforge.net/projects/fred
http://tomcat.apache.org/download-55.cgi
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600/index.php
http://sourceforge.net/projects/fred
http://tomcat.apache.org/download-55.cgi
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600/index.php

CodeCover- Specification 105

4.3.5 Test session

An arbitrary number of test sessions↗ must be supported.

The name and the comment of a test session↗ are text values. The start time is a time

stamp.

4.3.6 Code Base

An arbitrary number of code bases↗ must be supported. The date and time of the first

instrumentation is a time stamp.

4.4 Performance requirements

All performance requirements must be met on the recommended hardware.

4.4.1 Batch processing

Building and instrumenting a large program (4.3.1.3) must be possible within 10 hours.

4.4.2 Eclipse plug-in

The following constraints must hold true for a medium program (4.3.1.2) and should

hold true for a large program (4.3.1.3).

The Eclipse plug-in may not slow down Eclipse significantly.

Additionally the following response times must be met. They don’t apply to the first

call of a function. During the first call initialization routines may add a significant delay.

For simple GUI interaction 0.1 s response time is enough while 0.5 s is too slow. Selecting

instrumentable items is such a simple GUI interaction.

For interaction resulting in complicated rebuilds of the UI components the code high-

lighting 5 s response time is enough while 30 s is too slow. During this time the Eclipse

CodeCover- Specification 106

UI may not respond. An example for such interaction is changing the source code an-

notations while they are displayed.

For loading and saving files as well as processing tasks like building the correlation matrix

and generating a report there are no performance requirements. These tasks may not

block the Eclipse UI.

4.5 Availability

There are no special availability requirements.

4.6 Security

There are no special security requirements.

4.7 Robustness and failure behavior

File types are detected using a syntax check for plain text files and at least 64 bit long

magic numbers for binary files. That syntax check only has to detect wrong file types.

The software may show arbitrary behavior when it runs on broken hardware.

4.8 Usability

Any string displayed by the Eclipse plug-in is localizable. The default language is En-

glish.

A developer↗ can install the software easily. The installation procedure may only require

unzip and Java. The software must be installable within 5 minutes by a developer after

he has found the installation instructions and downloaded the necessary files.

All colors used for highlighting can be changed by the user.

Internal procedures must be invisible to the user as long as he doesn’t want to change

their behavior. Where applicable sensible defaults must be preset.

An English user’s manual is required. Online help is not required.

CodeCover- Specification 107

The user interface must be intuitive to the point that on line help is not needed. Eclipse

User Interface Guidelines version 2.116 must be followed for the Eclipse plug-in. Addi-

tionally per default the user is asked in a confirm dialog before a file with valuable user

data is deleted or overwritten.

4.9 Portability

The software must run on all platforms Eclipse 3.2.x runs on.

The delivered instrumentation↗ procedure must be compatible with Java 2 version 1.4.x

and Java 5 as well as preprocessed COBOL-85. Other languages must be implementable

without changing the session container’s↗ format.

4.10 Maintainability

The source code follows a style guide based on Sun’s Code Conventions17. The style

guide is described in a separate document.

All technical documents made specifically for creating and verifying the software are

released to the public.

4.11 Extensibility

The software is written to be highly extensible and documented on a level easy to

understand for their target audience. The documentation of the Eclipse plug-in is written

for the Eclipse user, the documentation of the batch interface is written for the shell

user (see Actors 2.2) and the documentation to extending the Software is written for

maintenance engineers↗. Tutorials for maintenance engineers will show how to extend

the software to other programming languages than COBOL and Java, how to add the

collecting of metrics during the instrumentation↗ and how to implement further coverage

criteria. The tutorials may assume good knowledge of Java, Grammars, JavaCC and

the languages that must be supported by the changed software.

16http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html
17http://java.sun.com/docs/codeconv/

http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html
http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html
http://java.sun.com/docs/codeconv/
http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html
http://java.sun.com/docs/codeconv/

CodeCover- Specification 108

Reports can be customized using templates, which can be selected in Eclipse using a

wizard. It must be easy to add new report formats like PDF↗ and DocBook XML↗,

which can be transformed into many formats.

To ease external analysis and report generation all data of a test session↗, except for the

boolean values sampled in conditional statements↗, must be available to easily imple-

ment an export to XML. The design team must decide if the session container↗ already

has such a format, or if report generation already contains it as an intermediate step.

Other coverage criteria should be easy to add for maintenance engineers↗ as long as

they don’t depend on execution order. No change to the instrumentation↗, test case

management and highlighting may be necessary to implement another condition coverage

criterion.

It must be easy to add further analysis of a session container. All evaluation results of

boolean expressions and counters must be easily accessible.

Based on the TestCaseNotifier class (see 2.1), functions to define test cases must be

added: a live mode with a graphical dialog which allows the user to start and stop test

cases during the SUT↗ execution and automatic test case recognition of JUnit test cases.

CodeCover- Specification 109

List of Figures

1.1 Work flow of the software . 8

2.1 Actors . 12

2.2 Key use cases . 15

2.3 Use cases related to measuring coverage 16

2.4 Use cases related to showing coverage . 28

2.5 Use cases related to administrating test sessions 31

3.1 Package selection . 80

3.2 Instrumentation dialog . 81

3.3 Coverage button . 82

3.4 Coverage view . 82

3.5 Test Sessions view . 83

3.6 Test case properties . 85

3.7 Import Test Session Container . 86

3.8 Import Coverage Log . 87

3.9 Export Test Session . 88

3.10 Report dialog . 89

3.11 If-then statements . 90

3.12 If-then-else statements . 91

3.13 Nested if-then-else statements . 91

3.14 Switch-statement with some cases and a default section 92

3.15 Highlighting of while loops . 92

3.16 Do-while statements . 93

3.17 For statements . 93

3.18 If-then statements in COBOL . 93

3.19 Evaluate statement . 94

3.20 Perform statement with test before . 94

3.21 Perform statement with test after . 94

3.22 Preferences dialog . 95

3.23 Project properties dialog . 96

3.24 Correlation View . 98

3.25 Live Notification . 100

3.26 Boolean Analyzer . 101

CodeCover- Specification 110

Glossary

basic statement

is a statement, that is not a looping statement↗ or a conditional statement↗. For

Java the statements return, throw, assert are also excluded.

branch coverage

(synonym: decision coverage) is a coverage criterion↗. A coverable item is a branch

of a conditional statement↗. For branch coverage, a coverable item is covered, if

it is entered at least once.

code base

contains all the uninstrumented code files↗ of a specific version of the SUT↗.

A code base has a date and time of the first instrumentation↗. If a code base is

instrumented from Eclipse, it has a relation to an Eclipse project.

code coverage

has two meanings:

1. is a measurement needed for a glass box test↗. There are different coverage

criteria, each defining the coverable items↗ and how they are covered.

2. depends on a concrete coverage criterion↗ and is defined—only considering

the instrumented part of the SUT—as the quotient of the covered coverable

items and the total number of coverable items.

code file

is a file containing the whole or a part of the source code of the SUT. For example

a *.java file in Java.

condition coverage

is a coverage criterion↗. Condition coverage defines the coverable items↗ as basic

boolean terms↗ used in statements↗ which require a boolean expression that affects

the control flow. There are different definitions of when such a basic boolean term

is considered as covered—e.g. strict condition coverage↗.

CodeCover- Specification 111

conditional statement

is a statement↗ of a specific programming language. Conditional statements are

statements creating branches in the control flow, e.g. if or switch in Java. It does

not matter, if a particular usage of a conditional statement creates a branch (e.g.

if (true)) or if branches of a particular usage are equal (e.g. if (a) { }). It is

a conditional statement creating two branches nonetheless, because an if usually

creates two branches.

On the other hand, though the result of some operators depends on a decision,

an operator itself creates no branch in the control flow. An example for such an

operator would be the A ? B : C operator, of which the result is determined by

the value of A. Accounted by itself, such an operator only influences data, not the

control flow. Therefore, it is no conditional statement.

coverable item

is the smallest unit that can be covered by a coverage criterion, e.g. a then branch

in branch coverage.

coverage criterion

defines the coverable item↗ and under which condition they are covered. Some

coverage criteria are:

• statement coverage↗

• branch coverage↗

• condition coverage↗

• loop coverage↗

coverage log

is a container for raw result data of a coverage run. It contains e.g. counters for all

basic statements. This file must be processed afterwards to produce test sessions↗

and test cases↗.

developer

is a person who is able to write and compile programs in at least one programming

language and can understand well documented programs. He is also experienced

in both using his computer, especially with file system interaction, web browsing,

CodeCover- Specification 112

extracting archive files, applying patches and editing plain text.

DocBook XML

is a XML based markup language for technical documentation.

entry point

is the item, that is used to start the SUT↗. For Java, it is a class file containing

the main method. For COBOL, it is the single code file↗.

HTML

(abbreviation for: Hyper Text Markup Language) is the predominant markup

language for the creation of web pages.

instrumentable item

is an item of the SUT↗. An instrumentable item is a package, containing other

instrumentable items, or a code file.

instrumentation

is the process of adding extra code elements to a code file↗ in order to get in-

formation about the control flow of the running SUT. Instrumentation is used to

measure the code coverage↗ of the code file.

loop coverage

is a coverage criterion. The loop coverage defines several coverable items↗ for each

looping statement↗:

• loop body is not entered

• loop body is entered once, but not repeated

• loop body is repeated more than one time

Looping statements like do-while cannot be bypassed and have only two possible

coverable items.

maintenance engineer

is a developer↗ who changes software. He understands technical English. He is

able to work out technical details himself, if he is pointed to good documentation.

CodeCover- Specification 113

MAST

(abbreviation for: More Abstract Syntax Tree) The MAST is a model of the source

code containing only the elements of the source code which are necessary to cal-

culate coverage criteria↗ e.g. statements↗, branches or boolean expressions which

have an affect on control flow.

A MAST always refers to a specific code base↗.

PDF

(abbreviation for: Portable Document Format) is an file format created and con-

trolled by Adobe Systems, for representing two-dimensional documents in a device

independent and resolution independent fixed-layout document format.

project

is an Eclipse project that appears e.g. in the Package Explorer of Eclipse.

session container

is a file in the file system. It contains:

• a code base↗

• a MAST↗ of this code base

• a number of test sessions↗ (≥ 0)

specification

describes all functional and non-functional requirements the software has to fulfill.

statement

is an element in a code file↗ that is the result of the statement production of the

grammar of the corresponding programming language.

statement coverage

is a coverage criterion↗. Statement coverage defines the coverable items↗ as basic

statements↗. A coverable item is covered, if the basic statement is executed. For

the Java programming language the execution of the statement has to start to set

the statement covered. For COBOL, a basic statement is called covered, if it is

executed and the program flow goes to the next statement.

CodeCover- Specification 114

strict condition coverage

is a kind of condition coverage↗. Strict condition coverage defines a basic boolean

term as covered, if it is evaluated to both true and false and the change from true

to false (or false to true) changes the result of the whole condition while every

other basic boolean term of the condition remains constant or is not evaluated.

SUT

(abbreviation for: system under test) The system tested with the software.

test case

1. is the description of the input for a test with its expected output according

to the specification↗.

2. is an element of a test session↗ containing a part or all of the code cover-

age↗ results for code files depending on a set of coverage criteria. Additional

information which are stored with a test case are:

• a name

• date and time of measurement

• a comment

• the related test session

If the test case is related to a JUnit test case or test method extra information

are needed:

• the names of the test methods of the JUnit test case

• whether the test methods of the JUnit test case failed or not

• if a test method failed, which failure respectively error was the reason

test session

is the result of a coverage measurement of the SUT by the software. It has:

• a name

• a date and a time of measurement

• a comment

and contains:

CodeCover- Specification 115

• a number of test cases↗ (≥ 0)

• the measurement results

• calculated coverage by instrumentable item↗

• a reference to a code base↗

• possibly a reference to a related Eclipse project↗

	Introduction
	Project overview
	About this document
	Addressed audience
	Conventions for this document
	Authors

	Functional requirements
	Test sessions and test cases
	Actors
	Use case description
	Batch interface
	Configuration
	Report
	Instrumentation, types of coverage and measurement
	Language support
	JUnit integration
	ANT integration
	Live Test Case Notification

	Graphical User Interface
	Package and file states
	Instrumentation
	Launching
	Coverage view
	Test sessions view
	Import
	Export
	Source code highlighting
	Preferences dialog
	Project properties dialog
	Correlation Matrix
	Live Notification View
	Boolean Analyzer
	Hot-Path

	Non-functional requirements
	Technologies and development environment
	Requirements to the working environment
	Quantity requirements
	Performance requirements
	Availability
	Security
	Robustness and failure behavior
	Usability
	Portability
	Maintainability
	Extensibility

	List of Figures
	Glossary

