
Design

CodeCover
Glass Box Testing Tool

Student Project A “OST-WeST”
University of Stuttgart

Version: 1.2

Last changed on May 28, 2008 (SVN Revision 24)

CodeCover- Design 2

Contents

1 Introduction 5
1.1 Project overview . 5
1.2 About this document . 5
1.3 Addressed audience . 5
1.4 Authors . 5
1.5 Notation . 6

1.5.1 Identifiers . 6

2 General overview 7
2.1 Process chain . 7
2.2 Adding support for new programming languages 9

3 Component overview 9
3.1 Data model . 10

3.1.1 MetaDataObject . 10
3.1.2 MetaData . 10
3.1.3 CoverableItem . 10
3.1.4 Locatable . 10
3.1.5 LocationList . 12
3.1.6 Location . 12
3.1.7 SourceFile . 12
3.1.8 BooleanResult . 12
3.1.9 BooleanAssignment . 12
3.1.10 BooleanTerm . 13
3.1.11 BasicBooleanTerm . 13
3.1.12 OperatorTerm . 13
3.1.13 BooleanOperator . 13
3.1.14 RootTerm . 13
3.1.15 Statement . 14
3.1.16 BasicStatement . 14
3.1.17 ComplexStatement . 14
3.1.18 ConditionalStatement . 14
3.1.19 Branch . 14
3.1.20 LoopingStatement . 15
3.1.21 StatementSequence . 15
3.1.22 HierarchyLevel . 15
3.1.23 HierarchyLevelType . 15
3.1.24 Example . 15

3.2 Instrumentation . 18
3.2.1 Overview . 18

CodeCover- Design 3

3.2.2 Instrumentation approach . 18
3.2.2.1 Statement coverage . 18
3.2.2.2 Branch coverage . 19
3.2.2.3 Condition coverage . 20
3.2.2.4 Loop coverage . 21

3.3 Metrics . 22
3.4 Report . 22

3.4.1 Programming language independency 25
3.4.2 Natural language independency 25
3.4.3 Template format . 26
3.4.4 Extensibility . 28
3.4.5 Hierarchical HTML Report . 28

3.4.5.1 Structure . 28
3.4.5.2 Generation . 29
3.4.5.3 Template format . 30

3.4.6 Single-file HTML Report . 32
3.4.6.1 Structure . 32
3.4.6.2 Generation . 32
3.4.6.3 Template format . 32

3.5 Batch . 33
3.6 Eclipse . 33

3.6.1 Data management . 33
3.6.1.1 Terminology . 33
3.6.1.2 TSContainerManager 34

3.6.1.2.1 Storing the test session containers 34
3.6.1.2.2 Active test session container 36
3.6.1.2.3 Active test cases 36
3.6.1.2.4 Listeners . 36
3.6.1.2.5 Saving and loading 37

3.6.2 Build and Run . 38
3.6.2.1 Building the instrumented SUT 38
3.6.2.2 Running the instrumented SUT 38
3.6.2.3 Post-execution actions 39

3.6.3 Annotation . 39
3.6.3.1 Attaching the model . 39
3.6.3.2 The annotation model 39
3.6.3.3 Layout of annotations 41

3.7 Package overview . 42

List of Figures 43

A Formal Proof Of Conditional Coverage Instrumentation 44
A.1 Java Language Specification . 44
A.2 Predefinitions . 45

CodeCover- Design 4

A.3 Consideration Of The Instrumentation I 47
A.4 Consideration Of The Instrumentation II 47

B Coverage log file specification 49
B.1 General description . 49
B.2 EBNF grammar . 49
B.3 Example . 52

CodeCover- Design 5

1 Introduction

1.1 Project overview

CodeCover is a glass box testing tool to measure the coverage of a running program. It

will be as independent as possible of the programming language of the covered program.

1.2 About this document

This document contains the necessary information to create a detailed design obeying

the requirements documented in the specification. It describes the behaviour of the

software and the artifacts which are created by it. The architecture is also defined by

this document, as well as the data structures used to store the data pertaining to the

operation of the software. Details like the structure of classes and the design of methods

have to be determined in the detailed design document.

1.3 Addressed audience

This document is addressed to

• the customer who ordered the software

• the project manager controlling the work

• the quality assurance division creating test cases for the software

• the developers implementing the design

• future developers maintaining and extending the software

• interested users of the software

• students of upcoming student projects

1.4 Authors

In the following table authors of this document are named.

CodeCover- Design 6

Author E-mail

Robert Hanussek hanussrt@studi.informatik.uni-

stuttgart.de

Steffen Kieß kiesssn@studi.informatik.uni-

stuttgart.de

Tilmann Scheller schellrt@studi.informatik.uni-

stuttgart.de

Markus Wittlinger wittlims@studi.informatik.uni-

stuttgart.de

1.5 Notation

1.5.1 Identifiers

FooBar denotes a class named FooBar.

FooBar denotes an abstract class named FooBar.

FooBar denotes an instantiated object of class FooBar.

FooBar denotes an interface class named FooBar.

FooBar denotes an object of a class which implementes the interface named FooBar.

fooBar(...) denotes a method named fooBar which has parameters (which are not

listed). Methods don’t have a special color because they can be easily identified by the

trailing brackets.

fooBar() denotes a method named fooBar which doesn’t have any parameters.

fooBar(...) denotes a static method (which has parameters).

fooBar denotes a field named fooBar.

foo.bar denotes a package called bar which resides in a package called foo. Packages

don’t have a special color because they can be identified easily since they are the only

items which contain a dot and are lower case.

mailto:hanussrt@studi.informatik.uni-stuttgart.de
mailto:hanussrt@studi.informatik.uni-stuttgart.de
mailto:kiesssn@studi.informatik.uni-stuttgart.de
mailto:kiesssn@studi.informatik.uni-stuttgart.de
mailto:schellrt@studi.informatik.uni-stuttgart.de
mailto:schellrt@studi.informatik.uni-stuttgart.de
mailto:wittlims@studi.informatik.uni-stuttgart.de
mailto:wittlims@studi.informatik.uni-stuttgart.de
FooBar
FooBar
FooBar
FooBar
FooBar
FooBar
fooBar(...)
fooBar()
fooBar(...)
fooBar
foo.bar

CodeCover- Design 7

2 General overview

2.1 Process chain

Code Parser AST Instrumenter

Instrumented
Code

Compiler Executable

Coverage
Log

Protocol

Execution

Metrics

Eclipse GUIReportTemplates

Report

Phases

Artifacts

Actors

Test Session Container

MAST

Original Code

Test Sessions

Figure 2.1: Process chain

This section describes the process of CodeCover in detail. The whole process consists

of three phases: instrumentation, execution and reporting. Each phase includes actions

which are performed and which create certain artifacts. The arrows in figure 2.1 denote

the data flow between the actors.

The process starts in the instrumentation phase and the only required input is a set of

valid code files (can be compiled without getting an error message). The instrumenter

consists of a parser and a part which performs the actual instrumentation of the source

code. The parser is generated automatically from a javacc grammar with the help of the

Java Tree Builder (JTB). This needs to be done only once, e.g. when the instrumenter

is built.

This parser creates an abstract syntax tree (AST) representation of the source code file.

The actual instrumentation is performed by traversing this AST and adding additional

CodeCover- Design 8

code to create an instrumented version of the code. During this traversal the static

information about the code is collected and the modified abstract syntax tree (MAST)

is created. The MAST is a model of the source code containing only the elements of the

source code which are necessary to calculate coverage criteria e.g. statements, branches

or boolean expressions which have an effect on control flow. The MAST is language

independent. Every element in the MAST also contains a reference to its location in

the corresponding source code file. Both the original code and the generated MAST are

saved in the Test Session Container.

After the code is instrumented, executable code can be generated by a compiler. This

has to be done by the user if the CLI is used. The compiling is initiated and controlled

by CodeCover when using the Eclipse Plugin. But compilers are not part of CodeCover .

The required compilers must be installed separately.

Then the instrumented code can be executed and the coverage measurements will be

recorded into the coverage log separated by test cases. The coverage log is saved in

the Test Session Container. It holds the information on the number of executions of a

coverable item in case of statement coverage, branch coverage and loop coverage or the

assignments which were assigned to boolean terms in case of condition coverage.

Now the Test Session Container contains all information which is needed to calculate

coverage metrics:

• the MAST which is needed to connect the results of the coverage measurement in

the coverage log to specific elements in the code

• the original code which is needed to generate reports with code highlighting

• the coverage log which contains the coverage measurements

Thus the coverage metrics can be calculated for report generation or to be output to the

Eclipse GUI.

For report generation the structure of the code is retrieved from the MAST. Since the in-

formation in the MAST is independent from programming language, the implementation

of report generation is also independent from the programming language. Report gener-

ation happens based on test cases and a template which defines the design and output

format (e.g. HTML) of a report. By specifing test cases the coverage measurements, the

report is based on, can be limited. Since the coverage log contains the coverage metrics

separated by test cases, these metrics can be calculated and used in the report.

CodeCover- Design 9

2.2 Adding support for new programming languages

In order to add support for a new programming language a new instrumenter needs to

be written. If a javacc grammar is available for the language the parser can be easily

generated with JTB. Then a component which performs the actual instrumentation

needs to be written, which adds the necessary instrumentation code and creates the

MAST. A component for logging needs to be supplied too. Everything else of CodeCover

is not language dependent and requires no further action.

3 Component overview

GUI / CLI

Instrumentation

Data Model

Report

Metrics

Figure 3.1: Component overview

As can be seen in Figure 3.1, the software consists of five general components, which are

arrayed in a hierarchical fashion. The arrows leading from one component to another

symbolize an accessing relationship, which runs from top to bottom. The Data Model

is situated at the bottom, since it acts as the foundation for all other components. On

top of the data model are the components Instrumentation, Report and Metrics, with

the last one also being accessible by the Report component. The topmost layer is the

user interface, be it a graphical user interface (GUI), or a commandline interface (CLI).

CodeCover- Design 10

3.1 Data model

This component contains all the packages and classes that are needed to hold the data

generated by the instrumentation itself and the data resulting from the execution of an

instrumented SUT. Every other component has access to the data model.

The following classes are used to represent the AST. The data will be stored in XML

files. A description of the format of these XML files can be found in the detailed design

document.

3.1.1 MetaDataObject

MetaDataObject is implemented by all classes to which meta data can be associated.

It has only one method (getMetaData()) which can be used to get the MetaData.

Instances of this class can be passed to the methods setObjectMetaData(...) and

getObjectMetaData(...) of the class TestCase.

3.1.2 MetaData

A MetaData represents the meta data associated to a AST element, e.g. coverage data

linked to certain elements of the AST.

This class is used internally.

3.1.3 CoverableItem

A CoverableItem represents a coverable item which can be covered in a test case.

Instances of this class can be passed to the method getCoverageCount(...) of the class

TestCase.

3.1.4 Locatable

A Locatable is an object with one or multiple locations.

MetaDataObject
MetaDataObject
getMetaData()
MetaData
setObjectMetaData(...)
getObjectMetaData(...)
TestCase
MetaData
MetaData
CoverableItem
CoverableItem
getCoverageCount(...)
TestCase
Locatable
Locatable

CodeCover- Design 11

ConditionalStatement
- LocationList keyword

LoopingStatement
- LocationList keyword
- CoverableItem neverExecutedItem
- CoverableItem onceExecutedItem
- CoverableItem multipleExecutedItem
- boolean optionalBodyExecution

HierarchyLevelType
- String englishName
- String internalName

<<interface>>
MetaDataObject

+ MetaData getMetaData()

LocationList

<<interface>>
Locatable

+ LocationList getLocation()

MetaData

Location
- int startOffset
- int endOffset

SourceFile
- String fileName
- String content

BooleanAssignment

+ BooleanAssignment(List<BooleanResult> results)

CoverableItem

Branch
- boolean implicit
- Location condition

BooleanTerm

BasicBooleanTerm
RootTerm

- Map<BooleanAssignment,CoverableItem> results

BooleanOperator
- int arity
- Map<BooleanAssignment,Boolean> possibleAssignments
- String name

BasicStatement

Statement

<<enum>>
BooleanResult

+ FALSE
+ TRUE
+ NOT_EVALUATED

HierarchyLevel
- LocationList header

ComplexStatement

OperatorTerm

file

results

*

coverableItem1

coverableItem

1

branches*

<<list>>
statements*

type

*

sequences

* children

terms

locations

1..*

body

1

*

term

1

operator

1

operands

*

StatementSequence

Figure 3.2: org.codecover.model.ast

org.codecover.model.ast

CodeCover- Design 12

The method getLocation() can be used to get this locations.

3.1.5 LocationList

A LocationList is a list of Locations.

This is necessary since some AST elements can have mulitple locations (e.g. a partial

class in C#).

3.1.6 Location

A Location is a segment in a code file.

It is given by its startOffset (which is the offset of the first char belonging to the

location), its endOffset (which is the offset of the first char no longer belonging to the

location), and the file which contains this location.

3.1.7 SourceFile

A SourceFile represents a source file.

It contains the fileName and the content of the file.

3.1.8 BooleanResult

A BooleanResult is an enum which describes the result of the evaluation of a boolean

term.

The value NOT_EVALUATED is used if a subterm was not evaluated, e.g. because of the

short circuit behaviour of an operator.

3.1.9 BooleanAssignment

A BooleanAssignment assigns every basic boolean term of a boolean term an BooleanResult.

getLocation()
LocationList
LocationList
Location
Location
Location
startOffset
endOffset
SourceFile
SourceFile
fileName
content
BooleanResult
BooleanResult
BooleanAssignment
BooleanAssignment
BooleanResult

CodeCover- Design 13

3.1.10 BooleanTerm

A BooleanTerm represents a boolean term which ist constructed of basic boolean terms

and boolean operators.

A BooleanTerm can be a BasicBooleanTerm or a OperatorTerm.

3.1.11 BasicBooleanTerm

A BasicBooleanTerm represents a basic boolean term which is considered atomic.

3.1.12 OperatorTerm

A OperatorTerm represents a boolean term which consists of an operator connect zero,

one or more BooleanTerms.

It contains a reference to the BooleanOperator used and the list of the operands (which

are BooleanTerms).

3.1.13 BooleanOperator

A BooleanOperator is a function with a given arity arity which maps a arity-tuple

of boolean values to a boolean value.

The object contains the arity, a map which maps the assignments to the result and a

name.

3.1.14 RootTerm

A RootTerm is a boolean term which is not a part of another boolean term.

A RootTerm consists of a BooleanTerm and a CoverableItem for every possible assign-

ment of this term.

BooleanTerm
BooleanTerm
BooleanTerm
BasicBooleanTerm
OperatorTerm
BasicBooleanTerm
BasicBooleanTerm
OperatorTerm
OperatorTerm
BooleanTerm
BooleanOperator
BooleanTerm
BooleanOperator
BooleanOperator
arity
arity
arity
name
RootTerm
RootTerm
RootTerm
BooleanTerm
CoverableItem

CodeCover- Design 14

3.1.15 Statement

A Statement is a basic or a complex statement.

Every Statement either has the type BasicStatement or on of the types derived of

ComplexStatement, ConditionalStatement and LoopingStatement.

A Statement has a list of RootTerms which appear in the statement and a CoverableItem

which will be covered when the Statement is executed.

3.1.16 BasicStatement

A BasicStatement is a statement which contains no other statements.

3.1.17 ComplexStatement

A ComplexStatement is a statement which can contain other statements and is either a

ConditionalStatement or a LoopingStatement.

3.1.18 ConditionalStatement

A ConditionalStatement is a statement where the control flow splits up into a number

of Branches.

The ConditionalStatement consists of these Branches and of the LocationList of the

keyword of the statement (for the purpose of coloring the source code).

3.1.19 Branch

A Branch is a branch which can be taken in a conditonal statement.

It consists of a StatementSequence, a CoverableItem which is covered when the branch

is executed, a flag which says that this branch does not appear explicitly in the source

code (e.g. a else branch when there is no else keyword for a if statement or the

default branch of a select statement where there is no default: block) and optionally

Statement
Statement
Statement
BasicStatement
ComplexStatement
ConditionalStatement
LoopingStatement
Statement
RootTerm
CoverableItem
Statement
BasicStatement
BasicStatement
ComplexStatement
ComplexStatement
ConditionalStatement
LoopingStatement
ConditionalStatement
ConditionalStatement
Branch
ConditionalStatement
Branch
LocationList
Branch
Branch
StatementSequence
CoverableItem

CodeCover - Design 15

the LocationList of the conditon whether this branch is taken (for the purpose of

coloring the source code).

3.1.20 LoopingStatement

A LoopingStatement is a statement which has a body which can be executed a number

of times not known at compile time.

It has a StatementSequence representing the body, the LocationList of the keyword

of the statement (for the purpose of coloring the source code), a boolean flag indicating

whether the body also can be executed zero times and three CoverableItems covered

when the body is executed zero times, one time or more often.

3.1.21 StatementSequence

A StatementSequence is a list of Statements.

3.1.22 HierarchyLevel

A HierarchyLevel is a program object which can contain other HierarchyLevels or

StatementSequences, e.g. Java packages, files, classes and functions.

3.1.23 HierarchyLevelType

A HierarchyLevelType represents the type of a HierarchyLevel.

It contains an English name which can be used in texts shown to the user (this name

might be e.g. “package” oder “class”) and an internal name which can be used e.g. for

choosing a icon for the HierarchyLevel.

3.1.24 Example

To further explain the data model the AST representation of a Java code example is

shown.

LocationList
LoopingStatement
LoopingStatement
StatementSequence
LocationList
CoverableItem
StatementSequence
StatementSequence
Statement
HierarchyLevel
HierarchyLevel
HierarchyLevel
StatementSequence
HierarchyLevelType
HierarchyLevelType
HierarchyLevel
HierarchyLevel

CodeCover- Design 16

public class TestClass {

public static void main(String[] args) {

if (something || nothing) {

foo();

} else {

bar();

}

while (bar()) {

i++;

j++;

}

}

}

CodeCover- Design 17

packageType:HierarchyLevelType

englishName = package
internalName = package

operatorTerm:OperatorTerm

somethingTerm:BasicBooleanTerm

barStatement:BasicStatement

mainMethod:HierarchyLevel

item:CoverableItem

ifTerm:RootTerm

whileStatement:LoopingStatement

multipleExecutedItem = item3
neverExecutedItem = item1
onceExecutedItem = item2
optionalBodyExecution = false

mainSequence:StatementSequence

methodType:HierarchyLevelType

englishName = method
internalName = method

item:CoverableItem
ifBranch:Branch

implicit = false

nothingTerm:BasicBooleanTerm

toplevel:HierarchyLevel testClassObject:HierarchyLevel

whileBody:StatementSequence

incrementIStatement:BasicStatement whileExpression:RootTerm

barTerm:BasicBooleanTerm

fooStatement:BasicStatement

fooStatementSequence:StatementSequence

item:CoverableItem

barStatementSequence:StatementSequence

elseBranch:Branch

implicit = false

classType:HierarchyLevelType

englishName = class
internalName = class

ifStatment:ConditionalStatement

item:CoverableItem

item:CoverableItem

item:CoverableItem

incrementJStatement:BasicStatement

orOperator:BooleanOperator

arity = 2
name = shortCircuitOr

item:CoverableItem

item:CoverableItem

operands

operands

coverableItem

coverableItem

coverableItem coverableItem

branches

terms

statements

statements

operator

term

term

statements

statements

<<list>>

<<list>>

<<list>>
statements

coverableItem

coverableItem

terms

type

<<list>>

children

statements

type

<<list>>

<<list>>

sequences

type

coverableItem coverableItem

body

children

branches

Figure 3.3: Created object graph

CodeCover- Design 18

3.2 Instrumentation

3.2.1 Overview

This component includes all the packages and classes which deal with the instrumen-

tation of source files. It includes all classes necessary to configure an instrumenter

according to the users needs (e.g. select specific coverage criteria). All instrumenters

are integrated using interfaces. A new instrumenter for a certain programming language

must support these interfaces. The implementation will include instrumenters for Java

1.5 and COBOL-85. The instrumentation component is modeled in greater detail in the

detailed design document.

3.2.2 Instrumentation approach

There are four coverage criteria: statement, branch, condition and loop coverage. The

instrumentation for each criterion is independent. For that reason, the instrumentation

approach is described separately using a pseudo programming language. All coverage

data is captured using counters. These counters can be variables, fields or arrays. In

the following examples, we use variables in the form counter1 to represent the counters.

All counters are stored persistently in the coverage log file, when a test case ends. The

specification of the coverage log file can be found in appendix B on page 49.

3.2.2.1 Statement coverage

In Java, the statement coverage has the semantic, that a statement is covered, if the

programm flow starts to execute the statement. For this reason, a simple instrumen-

tation before each statement is sufficient. The following example shows how statements

are instrumented:

CodeCover- Design 19

<statement1>

<statement2>

<statement3>

counter1 := counter1 + 1

<statement1>

counter2 := counter2 + 1

<statement2>

counter3 := counter3 + 1

<statement3>

In addition to the instrumentation of simple statements, looping and conditional state-

ments are instrumented specially, see loop respectively branch coverage.

3.2.2.2 Branch coverage

Branches are created by if, switch or similar statements. For each branch a counter is

introduced. If a branch is omitted, like an else-branch, it is added with an appropriate

counter.

if <condition> then

<statement sequence>

end if

if <condition> then

counter1 := counter1 + 1

<statement sequence>

else

counter2 := counter2 + 1

end if

if <condition> then

<statement sequence>

else

<statement sequence>

end if

if <condition> then

counter3 := counter3 + 1

<statement sequence>

else

counter4 := counter4 + 1

<statement sequence>

end if

CodeCover- Design 20

switch <variable>

case <value>

<statement sequence>

case <value>

<statement sequence>

end switch

switch <variable>

case <value>

counter5 := counter5 + 1

<statement sequence>

case <value>

counter6 := counter6 + 1

<statement sequence>

default

counter7 := counter7 + 1

end switch

switch <variable>

case <value>

<statement sequence>

case <value>

<statement sequence>

default

<statement sequence>

end switch

switch <variable>

case <value>

counter8 := counter8 + 1

<statement sequence>

case <value>

counter9 := counter9 + 1

<statement sequence>

default

counter10 := counter10 + 1

<statement sequence>

end switch

3.2.2.3 Condition coverage

The condition coverage instrumentation approach is highly dependent on the program-

ming language. For example, short-circuit operators or side effects have to be considered.

For programming languages without such characteristics the straight forward method

which is shown here may be used.

CodeCover- Design 21

if <conditionA> AND

<conditionB> then

<statement sequence>

end if

if <conditionA> then

if <conditionB> then

counter11 := counter11 + 1

else

counter10 := counter10 + 1

end if

else

if <conditionB> then

counter01 := counter01 + 1

else

counter00 := counter00 + 1

end if

end if

if <conditionA> AND

<conditionB> then

<statement sequence>

end if

For programming languages with side effects and short-circuit operators another ap-

proach is needed. See appendix A on page 44 for details.

3.2.2.4 Loop coverage

For each looping statement an auxiliary variable and three counter variables are intro-

duced. The auxiliary variable is incremented for each run of the loop body. After the

loop, the counter variable which corresponds to the value of the auxiliary variable is

incremented.

CodeCover- Design 22

while <condition> do

<statement sequence>

end while

auxiliary := 0

while <condition> do

auxiliary := auxiliary + 1

<statement sequence>

end while

switch auxiliary

case 0

counter0 := counter0 + 1

case 1

counter1 := counter1 + 1

default

counter2 := counter2 + 1

end switch

3.3 Metrics

This component contains the classes necessary to impose metrics on the data model.

Furthermore all classes needed for the introduction of new metrics are provided as well.

The implementation will include coverage metrics such as statement coverage, branch

coverage, conditional coverage and loop coverage.

3.4 Report

The report component consists of report generators whereas each of them is responsi-

ble for the creation of an output format, e.g. hierarchical HTML. A specific report is

generated based on a template which specifies the report generator needed for report

generation. The report component chooses the report generator which is able to process

the template and dispatches report generation to the chosen report generator. That

means for every report generator and thus for every output format exists a different

template format.

An alternative to this design would have been to have only one specific template format

for all types of output formats. But since output formats differ extensively in their struc-

CodeCover- Design 23

Figure 3.4: Report generation

CodeCover- Design 24

ture and don’t share many similarities the adjustements that could be set in templates

would be very limited.

Another alternative would have been to generate an intermediate report which is trans-

formed into the desired output format and document structure which are specified by

templates. This templates, of course, would be specific to output format. The advan-

tage of this alternative is that the generation of the raw data, which is saved in the

intermediate report, is seperated from the generation of a specific output format. The

problem is that the a powerful intermediate format has to be defined since the whole

report component is based on it. And a mechanism would have to be implemented

which transforms the intermediate report into the desired output format. But this is

a difficult task which would consume too much time. An intermediate format which is

already defined is DocBook. The DocBook report could be translated to the desired

output format by using XSLT. But this means that templates would have to be defined

in XSLT which is very complex and wouldn’t comply with the requirement to allow easy

adjustements to the design of reports.

Another alternative would have been to use an already existing report engine. But due

to the lack of report engines which can produce hierarchically linked HTML reports

(see 3.4.5) this is not an option.

The report component needs the following input to generate a report:

• the test cases which results are described by the report

• the template which specifies the design and output format of the report

• the structure of the code

• the coverage metrics for each code element (e.g. package, class)

• the original code

The test cases are part of the data model and handed over to the report component

when a report is requested.

The template is a file in XML-format and is given to the report component when a

report is requested. Templates are natural language specific. Although templates have a

general structure (described in 3.4.3), their detailed specification differs for each report

generator.

The structure of the code is needed to structure the report according to the code’s

CodeCover- Design 25

structure. Thus the report component needs access to the data model which models the

code’s structure.

To calculate the coverage metrics, the metrics component is used. It receives test cases

and a structural code element as input and then calculates the metrics by investigating

the coverage log which is part of the data model.

The original code is needed for code listings in reports.

3.4.1 Programming language independency

Since the report component builds on the data model, which is language independent,

the report component is language independent, too. The data model is hierarchically

structured by HierarchicalLevels which build a tree. This tree structure can be used

to map the code’s structure on the structure of a report, that is the tree structure of the

code builds the document structure of the report.

The data model identifies methods for every programming language and SUT. The report

component can use this information to place code listings with highlighting in the correct

hierarchical level of the report’s structure. Moreover this information can be used to

decide which is the deepest level of the data model which will be mapped onto an own

hierarchical level in the report. In case of the HTML report (see 3.4.5) this means that

it is possible to find out which structural code elements (namely methods) are described

by code pages.

In Java the above mentioned methods, of course, identify methods. In COBOL methods

identify sections.

3.4.2 Natural language independency

Names of language specific types are saved for each structural code element. This makes

it possible to output these language specific names (e.g., package, class, method in Java)

to the report. The language specific names are saved in english. To generate a report

in a different language, a template has to be created which translates the names. Thus

templates are (natural) language specific.

HierarchicalLevel

CodeCover- Design 26

3.4.3 Template format

The format of templates is XML and the general structure is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<report version="1.0" xmlns="http://www.codecover.org/xml/report-template">

<plugin>org.codecover.report.html</plugin>

<generator>org.codecover.report.html.HTMLReportGenerator</generator>

<name xml:lang="en">HTML Report (hierarchic)</name>

<name xml:lang="de">HTML Report (hierarchisch)</name>

<description xml:lang="en">

Generates a hierarchical report in HTML-format.

</description>

<description xml:lang="de">

Erstellt einen hierarchischen Report in HTML.

</description>

<template

version="1"

xmlns="http://www.codecover.org/xml/report-template/html-hierarchic">

...

</template>

</report>

All of the above defined elements and attributes are required in a template (none is

optional). It is recommended but not required to use UTF-8 as the character encoding.

The element plugin defines the name of the plugin which contains an extension which is

the report generator which can process the template. The extension is identified by the

name contained in the element generator. In the above example the plugin which con-

tains the report generator is named org.codecover.report.html and the report gen-

erator’s name is org.codecover.report.html.HierarchicalHTMLReportGenerator.

The attribute version of the root element report sets the version of the template

format. The template format which is specified in this document has the version 1.0.

The version is compared to the internal version number of the report component. The

major version number is incremented if a change in the component happens that requires

restructuring the template format so that it is incompatible with the component before

CodeCover- Design 27

the change. If only minimal changes to the template format happen which don’t affect

the compatibility then the minor version number is incremented. This is the case if

for example new elements are added to the template. An older version of the report

component can’t process these new elements but it still must be able to process the

template and create a report. Changes to the structure inside the template element

don’t affect the version number because this structure is specific to the class which

generates the report.

The namespace of the root element is defined in its attribute xmlns and must be

http://www.codecover.org/xml/report-template.

The name of the template is set with the element name and a short description is set with

the element description. The attribute xml:lang is used to indicate the language of

the name and description. The values of the attribute are language identifiers as defined

by RFC 46461. The name and the description can be multiply defined with different

language identifiers to supply the name and description in different languages. The

Eclipse-Plugin can use this attribute to identify the name/description which language

matches the one set in the GUI.

The attribute version of the element template sets the version of the template and is

specific to the class which generates the report. It is recommended to use this version in

the implementation of a report generating class to assure compatibility of the template

and the class.

The content of the element template (indicated by ... in the above example) is specific

to the class which generates the report. Typically the element template contains a new

level of subelements and these subelements contain CDATA-sections which contain the

real templates with placeholders, see 3.4.5 for an example. The namespace of the element

template is defined in its attribute xmlns. It must be unique and is recommended to be

http://www.codecover.org/xml/report-template/ plus a name of the output format

of the template. For example the hierarchical HTML Report uses html-hierarchic as

the name and the full namespace is

http://www.codecover.org/xml/report-template/html-hierarchic.

If the template is saved as a file in the filesystem the recommended filename is the name

defined in element name whereas spaces are translated to underscores and potentially

problematic characters like /, \ and other non-basic latin letters should be avoided in

1RFC 4646, Tags for the Identification of Languages: http://www.rfc-editor.org/rfc/rfc4646.txt

CodeCover- Design 28

the filename. The recommended file extension is xml. The filename for the hierarchical

HTML Report is HTML_Report_hierarchic.xml for example.

3.4.4 Extensibility

The report component can be extended to support further output formats by imple-

menting a new report generator and specifing a new template format.

Since the report component is independent from programming language, no costumiza-

tion is needed to support new programming languages.

3.4.5 Hierarchical HTML Report

3.4.5.1 Structure

The hierarchical HTML Report consists of three types of pages which are described

in the specification. This document only describes how the hierarchical HTML report

generator maps the structure of the data model onto the structure of the report.

Every report has exactly one title page. It lists the topmost elements of the hierarchical

code structure. Every listed element is linked to its corresponding detail page. A detail

page is either a selection page or a code page.

All elements above the level of methods (see 3.4.1) are described in selection pages.

Selection pages describe their corresponding element and contain a list of the direct

children of the corresponding element. Every listed element is linked to its corresponding

detail page. Methods are described in code pages which are the deepest hierarchical level

of the hierarchical HTML report.

In Java the only structural types above the level of methods are packages and classes

which are described in selection pages.

In COBOL methods, which are described by code pages, are sections. COBOL-programs,

which can be nested to arbitrary depth, are described by selection pages. If a program

contains code without an enclosing section, it is described in an extra code page which

is put on the same level (in the report) as the code pages of the sections of the program.

To avoid redundancy of code listings, the code of sub-programs is omitted in code pages.

For example in the report of figure 3.5 the code page of section SB wouldn’t neither

CodeCover- Design 29

Figure 3.5: Structure of hierarchical HTML report of COBOL programs

contain the code of program PB nor PC. The selection page for program PC and the

code pages of code CA, section SA and SB are omitted in figure 3.5 but they would exist

in the real report of course.

3.4.5.2 Generation

Generating a report is basically done by traversing the tree structure of the data model

and generating the corresponding selection or code page for each element of the tree.

Every page contains metrics about its corresponding element. To calculate these metrics,

the hierarchical HTML report generator uses the metrics component (see 3.3).

Apache Velocity2 is used as the template engine. This works as follows:

1. An instance of the Apache Velocity template engine is created.

2. A so-called Context is filled with the data that will be inserted into the template

HTML code for the title page. The inserted data is for example the achieved

statement coverage for the whole SUT or the names of the top-level packages (if

2Apache Velocity: http://velocity.apache.org/

CodeCover - Design 30

it’s a report about a Java SUT). To fill the Context, the actual value and a key

to this value are saved. The key of the value is the name of the placeholder in the

template HTML code.

3. The template HTML code is merged with the Context, that is the placeholders are

replaced with the real data.

4. Now a Context is created for each selection page. In case of Java it is a Context

for each package and class. In case of COBOL it is a context for each program.

5. The Contexts are merged with the template HTML code for selection pages. This

creates the selection pages of the report.

6. Now a Context is created for each code page, that is for each method (see 3.4.1).

7. The Contexts are merged with the template HTML code for code pages. This

creates the code pages of the report.

3.4.5.3 Template format

The template format is extended as follows:

<?xml version="1.0" encoding="UTF-8"?>

<report version="1.0" xmlns="http://www.codecover.org/xml/report-template">

<plugin>org.codecover.report.html</plugin>

<generator>org.codecover.report.html.HierarchicalHTMLReportGenerator</generator>

<name xml:lang="en">HTML Report (hierarchic)</name>

<name xml:lang="de">HTML Report (hierarchisch)</name>

<description xml:lang="en">

Generates a hierarchical report in HTML-format.

</description>

<description xml:lang="de">

Erstellt einen hierarchischen Report in HTML.

</description>

<template

version="1"

xmlns="http://www.codecover.org/xml/report-template/html-hierarchic">

<language>de</language>

<title-page><![CDATA[

...

CodeCover- Design 31

]]></title-page>

<selection-page><![CDATA[

...

]]></selection-page>

<code-page><![CDATA[

...

]]></code-page>

<text-file filename="style.css" content-type="text/css"><![CDATA[

...

]]></text-file>

<resource filename="logo.png">...</resource>

</template>

</report>

The filename of the template is HTML_Report_hierarchic.xml.

The version number defined in the attribute version of element template must be incre-

mented if any changes to the HTML report generation happen that affect the structure

or semantics of placeholders inside the element template.

The element language identifies the language of the generated report and is a two-letter

code according to ISO 639-1.

There are three new elements which contain the template HTML code for title (title-page),

selection (selection-page) and code pages (code-page). The HTML code of the tem-

plate contains placeholders for the data which will be inserted in the template by Apache

Velocity.

The two elements text-file and resource are used to provide additional text files

and binary resources. The text-file-element contains the text (e.g., a CSS stylesheet)

which is to be written into a text file with the content type specified in the attribute

content-type. The resource-element contains the content of a binary file encoded in

Base643. Both elements have the attribute filename which denotes the path to the file

relative to the output directory of the report.

3Base64 is specified in RFC 4648: ftp://ftp.rfc-editor.org/in-notes/rfc4648.txt

CodeCover - Design 32

3.4.6 Single-file HTML Report

3.4.6.1 Structure

This type of report consists of only one HTML page. It is divided into an overview

section and a code section. The overview section lists the units (e.g. classes, methods)

of the SUT and their corresponding metrics. Moreover it contains some statistics on the

structure of the SUT (e.g., the number of classes) and information about the test cases

the report is about. The code listings of all source files are contained in the code section.

3.4.6.2 Generation

To generate the single-file HTML report nearly the same procedure as described in 3.4.5.2

is used. The only difference is that only one Context is created which contains the data

to be inserted into the template of the file.

3.4.6.3 Template format

The template format is extended as follows:

<?xml version="1.0" encoding="UTF-8"?>

<report version="1.0" xmlns="http://www.codecover.org/xml/report-template">

<plugin>org.codecover.report.html</plugin>

<generator>org.codecover.report.html.SingleFileHTMLReportGenerator</generator>

<name xml:lang="en">HTML Report (single-file)</name>

<name xml:lang="de">HTML Report (eine Datei)</name>

<description xml:lang="en">

Generates a single-file report in HTML-format.

</description>

<description xml:lang="de">

Erstellt einen Report in einer einzigen HTML-Datei.

</description>

<template

version="1"

xmlns="http://www.codecover.org/xml/report-template/html-single-file">

<language>de</language>

<html-page><![CDATA[

CodeCover- Design 33

...

]]></html-page>

</template>

</report>

The filename of the template is HTML_Report_SingleFile.xml.

The version number defined in the attribute version of element template must be

incremented if any changes to the report generation happen that affect the structure or

semantics of placeholders inside the element template.

The element language identifies the language of the generated report and is a two-letter

code according to ISO 639-1.

The template HTML code is defined with the element html-page.

3.5 Batch

This component encompasses all the packages and classes necessary for the command

line interface.

3.6 Eclipse

This component contains all the packages and classes which are related to the Eclipse

plugin part of CodeCover .

3.6.1 Data management

The classes and interfaces mentioned in this section are contained in the package org.

codecover.eclipse.tscmanager except for the class TestSessionContainer which is

contained in the package org.codecover.model.

3.6.1.1 Terminology

The Eclipse plugin of CodeCover can handle multiple test session containers. Each test

session container is associated with a specific project in Eclipse. Eclipse projects are

org.codecover.eclipse.tscmanager
org.codecover.eclipse.tscmanager
TestSessionContainer
org.codecover.model

CodeCover- Design 34

stored in the workspace of Eclipse. The files of the test session containers are stored

in the CodeCover-folder of the associated project. The CodeCover-folder is a folder on

the root level of each Eclipse project which contains test session containers. Thus the

user just has to copy the folder of an Eclipse project to get a full backup of the project

including his coverage measurements.

A Test session container which is associated with a currently open project is called a

known test session container. The reason for this term is that files and folders which

reside in closed projects aren’t accessible and thus can’t be ”known” by the plugin.

The active test session container is the known test session container which contains the

active test cases which are currently visualized in the plugin’s views, e.g. the Coverage

view and the Test Sessions view. The active test cases can be selected in the Test

Sessions view, see the specification document for details.

A test element is either a test session or a test case.

3.6.1.2 TSContainerManager

The central component which handles the data management in the Eclipse plugin is the

TSContainerManager which provides the following functions:

• Providing methods to select the active test session container and the active test

cases

• Providing access to the currently active test session container (to add/delete/modify

test elements)

• Providing the currently active test cases

• Providing a list of the currently known test session containers

• Providing methods to add and delete test session containers

• Notification of listeners (e.g., the views of the plugin) about changes

• Saving and loading the test session containers

• Saving and loading which test cases are active

3.6.1.2.1 Storing the test session containers

The implemented concept of handling multiple test session containers with the Eclipse

plugin is simple. As mentioned before each test session container is associated with a

TSContainerManager

CodeCover- Design 35

project and stored in the CodeCover -folder of this project. This means adding a test

session container to a project is as simple as copying the file to the CodeCover -folder of

the project.

On startup of the plugin the TSContainerManager scans all CodeCover -folders of all

open projects and loads all files of the CodeCover -folders once to determine which test

session containers they contain. Since holding all test session containers in memory

would consume to much memory, only a representation of each found test session con-

tainer is stored in the TSContainerManager. This representation is an object of class

TSContainerInfo and stores the following information about the represented test session

container:

• the path to the file of the test session container

• the associated project

• the creation date of the test session container

• the names of the active test cases of the test session container

The path is used as a unique ID for each test session container and makes it possible to

distinguish known test session containers from each other.

The managed list of known test session containers can of course change during the

execution of the plugin if:

• the user opens a project: the newly accessible test session containers are added to

the list

• the user closes a project: the test session containers contained in (associated with)

the project are removed from the list

• the user creates a test session container by running a coverage measurement: the

test session container is added to the list

• the user imports a test session container into a project: the test session container

is added to the list

• the user deletes a test session container: the test session container is removed from

the list

The first two cases are detected by listening to changes in the workspace of Eclipse, which

is done by WorkspaceListener, and then taking the appropriate action (adding/removing).

The other three cases are detected by the TSContainerManager itself because adding

TSContainerManager
TSContainerManager
TSContainerInfo
WorkspaceListener
TSContainerManager

CodeCover- Design 36

and deletion of test session containers are handled by the TSContainerManager.

3.6.1.2.2 Active test session container

As mentioned before it would be too resource-consuming to hold all known test session

containers in memory, which is the reason why only the active test session container is

actually represented by an object of class TestSessionContainer and can be modified.

To avoid inconsistencies the TSContainerManager provides this TestSessionContainer

as a compound together with the respective TSContainerInfo-representation and the

active test cases in the form of an object of class ActiveTSContainerInfo.

Activating an other test session container is done by passing the TSContainerManager

the TSContainerInfo-representation of the test session container to activate. The

TSContainerManager then loads the test session container from its file into memory.

Since Eclipse is a multi-threaded application, the plugin has to take care of concurrent

modifications. To apply changes to the active test session container one has to provide

an ActiveTSContainerRunnable which is then passed to the TSContainerManager and

synchronized with other modifications to the active test session container.

3.6.1.2.3 Active test cases

The active test cases can be selected by a component of the plugin by passing a set of test

cases to the TSContainerManager. In the perspective of the TSContainerManager the

active test cases are just a set of test cases of the currently active test session container,

which are provided to the components of the plugin which visualize them.

To be able to ”remember” the active test cases of a test session container after an other

test session container was activated, the names of the active test cases are stored in

the TSContainerInfo-representations of the known test session containers as objects

of class TestCaseInfo. When a test session container is activated the set of active

test cases can be restored by reading the stored names (the TestCaseInfo objects)

from the TSContainerInfo-representation. This information is also stored on disk by

ActiveTestCasesStorage and ActiveTestCasesSaveParticipant to be able to ”re-

member” the active test cases after a restart of the plugin.

3.6.1.2.4 Listeners

There are two ways to access the information managed by the TSContainerManager.

One way is to actively get the information by calling the methods of TSContainerManager.

The passive approach is to register a component as a listener, which is then notified of

TSContainerManager
TestSessionContainer
TSContainerManager
TestSessionContainer
TSContainerInfo
ActiveTSContainerInfo
TSContainerManager
TSContainerInfo
TSContainerManager
ActiveTSContainerRunnable
TSContainerManager
TSContainerManager
TSContainerManager
TSContainerInfo
TestCaseInfo
TestCaseInfo
TSContainerInfo
ActiveTestCasesStorage
ActiveTestCasesSaveParticipant
TSContainerManager
TSContainerManager

CodeCover- Design 37

changes in the TSContainerManager. Listeners, which must implement the interface

TSContainerManagerListener, are informed about changes of:

• the selection of the active test session container

• the active test session container itself (e.g., deletion of a test case)

• the selection of active test cases (of the active test session container)

• the list of known test session containers (i.e., a test session container was added /

removed)

The listeners are handled by the TSContainerManagerListenerHandler.

3.6.1.2.5 Saving and loading

The easiest way of implementing the saving of test session containers, that is the process

of writing them to disk, would have been to perform a save instantly after a change

had been performed. Since saving is a resource-consuming operation, this approach isn’t

feasible. To achieve the goal of minimizing save operations, saving is only performed

when an other test session container is activated or the associated project is closed.

Since only the active test session container is kept in memory, the save operation can’t

be deferred any further (else the changes would be lost).

The actual operation of reading and writing the files of the test session containers

is already implemented by the class TestSessionContainer and called by the class

TSContainerStorage which handles loading and saving of test session containers.

For saving test session containers when a project is closed, a special treatment has to

be undertaken because during the close-event (propagated by Eclipse) the workspace is

locked for changes and thus saving, which implicates a modification of the workspace,

can’t be performed. Therefore the save operation is queued in the TSContainerSaveQueue

until Eclipse requests the plugin to perform saving. This request can be detected by

implementing a org.eclipse.core.resources.ISaveParticipant which is then regis-

tered to receive save requests from Eclipse. TSContainerManagerSaveParticipantHandler

is the class which receives the requests and distributes them to all registered SaveParticipants.

The two save participants are the TSContainerSaveParticipant and the

ActiveTestCasesSaveParticipant. The former saves the active test session container

if it changed since it was last saved and furthermore performes the save operations

queued in the TSContainerSaveQueue. The latter saves which test cases are active

(see 3.6.1.2.3) and which test session container is active.

TSContainerManager
TSContainerManagerListener
TSContainerManagerListenerHandler
TestSessionContainer
TSContainerStorage
TSContainerSaveQueue
org.eclipse.core.resources.
ISaveParticipant
TSContainerManagerSaveParticipantHandler
SaveParticipants
TSContainerSaveParticipant
ActiveTestCasesSaveParticipant
TSContainerSaveQueue

CodeCover- Design 38

3.6.2 Build and Run

This section covers the parts of the Eclipse plugin which are relevant for the build of the

instrumented SUT, its execution and necessary post-processing.

3.6.2.1 Building the instrumented SUT

CodeCover doesn’t do incremental instrumentation yet, so whenever a build is triggered

by Eclipse a full build needs to be done. The build process of an instrumented SUT

basically works like this: CodeCover participates in the build of the uninstrumented

SUT with the help of CodeCoverCompilationParticipant, which allows CodeCover to

perform additional actions before the actual build This includes searching for a test ses-

sion container which matches the current code base, or creating a new one if necessary.

As a second step the instrumentation of the sources is also performed there. The in-

strumented sources are placed in a project dependent location in the metadata section

of the workspace. Last step is the compilation of the instrumented sources by invoking

the Eclipse java compiler with the compiler settings of the project.

3.6.2.2 Running the instrumented SUT

The compiled instrumented SUT has been placed in a project dependent location in

the workspace metadata section by the CodeCoverCompilationParticipant. In order

to execute the instrumented object code, a redirection from the uninstrumented object

to the instrumented object code needs to be performed. This is done with help of the

CodeCoverClasspathProvider which adds another classpath entry to the top of the list

of classpath entries which points to the directory where the instrumented object code is

stored. Since the java runtime searches for classes in the order of the classpath entries,

the instrumented classes will be found first, leading to the execution of the instrumented

SUT. A ClasspathProvider is bound to a specific launch configuration. By using

the CodeCoverTab, which is added to the list of tabs which are shown for a launch

configuration, the user is able to set and unset the CodeCoverClasspathProvider for

the opened launch configuration and thereby be able to quickly switch between runs of

the instrumented and uninstrumented SUT.

CodeCoverCompilationParticipant
CodeCoverCompilationParticipant
CodeCoverClasspathProvider
ClasspathProvider
CodeCoverTab
CodeCoverClasspathProvider

CodeCover- Design 39

3.6.2.3 Post-execution actions

After the termination of a SUT certain actions need to be performed. One important

action is the import of the coverage log which resulted from the execution of the SUT.

In order to track the execution of a SUT a CodeCoverDebugListener is registered with

Eclipse. On SUT termination CodeCoverDebugListener receives a respective event.

This event triggers functionality which searches for a test session container to whom the

coverage log belongs to. In case the search is successful, the coverage log is imported

into the test session container and the views are updated to show the new data.

3.6.3 Annotation

The classes and interfaces described in this section are contained in the package org.

codecover.eclipse.annotation. Other classes are mentioned with their qualified

names where they could be confused easily.

This package adds coverage highlighting of the active test cases to the default java editor

of eclipse. This is done by attaching an implementation of org.eclipse.jface.text.

source.IAnnotationModel to every java editor as it is opened. The model then queries

the org.codecover.report to find out what information to annotate where. It adds

an org.eclipse.jface.text.source.Annotation to the editor for each consecutive

region of text to be highlighted in a certain way. The layout of these annotations is

defined via org.eclipse.ui.editors.markerAnnotationSpecification .

3.6.3.1 Attaching the model

The org.codecover.eclipse.CodeCoverPlugin makes sure that an instance of

EditorTracker exists while the plugin is running. EditorTracker registers listen-

ers with Eclipse to get informed whenever a org.eclipse.ui.IWorkbenchPart is cre-

ated. For every org.eclipse.ui.texteditor.ITextEditor that is opened it calls

CoverageAnnotationModel.attach(...), which adds a new instance of

CoverageAnnotationModel to the editors org.eclipse.jface.text.source.

IAnnotationModelExtension. From then on all annotations provided by this model

will be displayed among the usual annotations that editor displays.

3.6.3.2 The annotation model

CodeCoverDebugListener
CodeCoverDebugListener
org.codecover.eclipse.annotation
org.codecover.eclipse.annotation
org.eclipse.jface.text.source.IAnnotationModel
org.eclipse.jface.text.source.IAnnotationModel
org.codecover.report
org.eclipse.jface.text.source.Annotation
org.eclipse.ui.editors.markerAnnotationSpecification
org.codecover.eclipse.CodeCoverPlugin
EditorTracker
EditorTracker
org.eclipse.ui.IWorkbenchPart
org.eclipse.ui.texteditor.ITextEditor
CoverageAnnotationModel
org.eclipse.jface.text.source.
IAnnotationModelExtension

CodeCover- Design 40

CoverageAnnotationModel implements an annotation model to serve

EclPositionedAnnotations to the editor. They are subclassed as required to show

every kind of highlighting including hotpath. The model is also responsilbe for deciding

when and what to annotate.

CoverageAnnotationModel listens for changes in the document and in the data model of

CodeCover . On every change it uses org.codecover.eclipse.utils.

EclipseMastLinkage to find the corresponding SourceFile to the ICompilationUnit

displayed in the editor. If it finds a SourceFile and it’s content is equal to the editor’s

content the file is annotated.

The CoverageAnnotationModel.createAnnotations() is responsible for querying the

model what to annotate and creating all EclPositionedAnnotations the user sees. To

measure the coverage of source files it queries org.codecover.highlighting.

CodeHighlighting. Currently it just converts the results of annotateCoverage(...)

and generateLineAnnotationsByFile() into EclPositionedAnnotations.

CoverageAnnotationModel
EclPositionedAnnotation
CoverageAnnotationModel
org.codecover.eclipse.utils.
EclipseMastLinkage
SourceFile
ICompilationUnit
CoverageAnnotationModel.createAnnotations()
EclPositionedAnnotation
org.codecover.highlighting.
CodeHighlighting
annotateCoverage(...)
generateLineAnnotationsByFile()
EclPositionedAnnotation

CodeCover- Design 41

Don’t confuse the annotations subclassing org.eclipse.jface.text.source.

Annotation with those in org.codecover.report.highlighting.annotation. The

former, prefixed with Ecl, are those you see in your Eclipse editor. The latter make up

the source file oriented view of what characters were covered how, using a specific set of

metrics and test cases.

3.6.3.3 Layout of annotations

In Eclipse every org.eclipse.jface.text.source.Annotation has a type string that

is defined in plugin.xml. This type decides which layout is used to display the annota-

tion in the editor.

There are two kinds of annotations displayed in Eclipse. The first is EclCoverageAnnotation

which is used to show the user which elements are covered. The type of these annota-

tions has the form org.codecover.eclipse.annotation.*Coverage*Annotation. At

the first * the level of coverage is inserted (one of full, partial and no). At the second

* the kind of coverage metric is inserted (one of Other – for user defined metrics – and

Branch, Conditional, Loop and Statement – for the bundled metrics). All of these

annotations have their default color layout defined in plugin.xml and are defined to be

configurable individually in the Eclipse preferences dialog.

The second kind of annotation is hotpath.EclLineExecutionAnnotation which is used

to show the hot path icons in the editor. It’s type is org.codecover.eclipse.annotation.

lineExecutionAnnotation. The class LineExecutionImageProvider generates the

icons the user sees based on the attributes of hotpath.EclLineExecutionAnnotation.

The mapping between annotation and color is implemented in generateIcon

(EclLineExecutionAnnotation).

org.eclipse.jface.text.source.
Annotation
org.codecover.report.highlighting.annotation
org.eclipse.jface.text.source.Annotation
EclCoverageAnnotation
hotpath.EclLineExecutionAnnotation
LineExecutionImageProvider
hotpath.EclLineExecutionAnnotation
generateIcon
(EclLineExecutionAnnotation)

CodeCover- Design 42

3.7 Package overview

report html

metrics

batch

eclipse

views

controls

model

ast

utils

gbt2

instrumentation

java15

cobol85

criteria

actions

dialogs

org

Figure 3.6: Package overview

This section provides an overview of the deployment plan of the software. The domain

used for the development of the software is used as the common root for the packages,

meaning all packages are in the org.codecover namespace. As seen in figure 3.6 the

components from section 3 are represented as the six main packages. They are further

refined through packages of their own, e.g. the packages for the java instrumentation

(java15) and the COBOL instrumentation (cobol85).

org.codecover
java15
cobol85

CodeCover- Design 43

List of Figures

2.1 Process chain . 7

3.1 Component overview . 9

3.2 org.codecover.model.ast . 11

3.3 Created object graph . 17

3.4 Report generation . 23

3.5 Structure of hierarchical HTML report of COBOL programs 29

3.6 Package overview . 42

org.codecover.model.ast

CodeCover- Design 44

A Formal Proof Of Conditional Cover-

age Instrumentation

A.1 Java Language Specification

We have created source code examples in Java and have instrumented them by hand.

Especially the instrumentation for the conditional coverage is very tricky. Therefore we

want to proof, that the semantic of the boolean terms is not effected and is equal to the

instrumented boolean terms.

First there are quotations of the Java Language Specification—Third Edition4.

§15.23
The && operator is like &, but evaluates its right-hand operand only if the

value of its left-hand operand is true. [..] At run time, the left-hand operand

expression is evaluated first; if the resulting value is false, the value of the

conditional-and expression is false and the right-hand operand expression is

not evaluated. If the value of the left-hand operand is true, then the right-

hand expression is evaluated; the resulting value becomes the value of the

conditional-and expression.

§15.24
The || operator is like | , but evaluates its right-hand operand only if the

value of its left-hand operand is false. [..] At run time, the left-hand operand

expression is evaluated first; if the resulting value is true, the value of the

conditional-or expression is true and the right-hand operand expression is

not evaluated. If the value of the left-hand operand is false, then the right-

hand expression is evaluated; the resulting value becomes the value of the

conditional-or expression.

4http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

CodeCover- Design 45

A.2 Predefinitions

Lets now discuss a number of functions that transform boolean terms. We use φ for the

boolean environment, that assigns every boolean expression either true or false.

fL(T) := (S && T), φ(S) = true

fR(T) := (T && U), φ(U) = true

φ(fL(T)) = φ(fR(T)) = φ(T)

(1)

For fL(T): according to §15.23, first the value of S is evaluated. Only if φ(S) is true,

which is certain, then T is evaluated. To sum this up, φ(fL(T)) is true if, and only if,

φ(T) is true.

For fR(T): according to §15.23, first the value of T is evaluated. Only if φ(T) is true,

then U is evaluated (to true). Moreover φ(fR(T)) is true if, and only if, φ(T) is true.

g(T) := fR ◦ fL(T) = fR(fL(T)) = ((S && T) && U), φ(S) = φ(U) = true

φ(g(T))
def. of g

= φ(fR(fL(T)))
eq. (1)

= φ(fL(T))
eq. (1)

= φ(T)
(2)

According to equation (1), which is used twice, φ(g(T)) is true, if, and only if, φ(T) is

true.

h(T) := (T || V), φ(V) = false

φ(h(T)) = φ(T)
(3)

According to §15.22.4, the || operation evaluates the left operant (T) first. If it is true,

the whole || expression is evaluated to true. Is the first operant (T) false, then the second

operant (V) determines the result of the whole expression. So φ(h(T)) is false if and

only if φ(T) is false.

i(T) := h ◦ fR ◦ fL(T) = h(fR(fL(T)))

i(T) = ((S && T) && U) || V, φ(S) = φ(U) = true, φ(V) = false

φ(i(T))
def. of i

= φ(h(fR(fL(T))))
eq. (3)

= φ(fR(fL(T)))
eq. (1)

= φ(fL(T))
eq. (1)

= φ(T)

(4)

CodeCover- Design 46

According to equations (1) and (3) φ(i(T)) is true, if, and only if, φ(T) is true.

Using Java syntax, we can consider some terms:

INITIAL := (((intBitMask = 0) == 0) || true)

φ(INITIAL) = true

USAGE := ((intBitMask | = 1 == 0) || true)

φ(USAGE) = true

RESULT := ((intBitMask | = 2 == 0) || true)

φ(RESULT) = true

(5)

The evaluation of the left operands is true for the first example and false for the second

and third example. But as §15.22.2 says, for the right operands always evaluating to

true, φ(INITIAL), φ(USAGE) and φ(RESULT) are true too.

Last but not least we need a description of a Java method:

public boolean add(int intBitMask) {

[..]

return true;

}

STORE-T := (add(intBitMask) || true)

φ(STORE-T) = true

STORE-F := (add(intBitMask) && false)

φ(STORE-F) = false

(6)

The evaluation of add(intBitMask) is true for both equations. The usage of the || true
does not change this semantic. According to §15.22.4: if the first term is evaluated to

true, the second term is not evaluated anymore and can not affect the evaluation. So

φ(STORE-T) is known to be true.

The usage of the && false in the second term sets the whole term to false. According

to §15.22.3: if the first term is evaluated to true, which is the case, the second term

is considered. If and only if this term is true too, which is not the case, the whole

expression is evaluate to true. So φ(STORE-F) is known to be false.

CodeCover- Design 47

A.3 Consideration Of The Instrumentation I

CodeCover will instrument every condition of if, while and for statements. Every basic

boolean term of these conditions is instrumented by using function g (see equation (2)).

The terms S and U are replaced by USAGE and RESULT. Two examples will illustrate

the instrumentation.

if (position == 0) if ((((intBitMask1 |= 1 == 0) || true) &&

(position == 0)) &&

((intBitMask1 |= 2 == 0) || true))

if ((position == 0) ||

list.isEmpty())

if (((((intBitMask2 |= 1 == 0) || true) &&

(position == 0)) &&

((intBitMask2 |= 2 == 0) || true)) ||

((((intBitMask2 |= 4 == 0) || true) &&

(list.isEmpty())) &&

((intBitMask2 |= 8 == 0) || true)))

As discussed after equation (2), the semantic of the basic boolean terms is not changed.

In addition to that, the bit mask is used to get to know, whether an basic boolean term

is evaluated or not. Moreover the result of the evaluation can be stored in the bit mask

too.

A.4 Consideration Of The Instrumentation II

Unfortunately we need to add more instrumentation tags. This is needed because we

have to store the full evaluation of the conditional terms within the if, while or for

statements. Two examples illustrate these extensions.

CodeCover- Design 48

if (position == 0) if ((((((intBitMask1 = 0) == 0) || true) &&

((((intBitMask1 |= 1 == 0) || true) &&

(position == 0)) &&

((intBitMask1 |= 2 == 0) || true))) &&

(counter1.add(intBitMask1) || true)) ||

(counter1.add(intBitMask1)) && false))

if ((position == 0) ||

list.isEmpty())

if ((((((intBitMask1 = 0) == 0) || true) &&

(((((intBitMask2 |= 1 == 0) || true) &&

(position == 0)) &&

((intBitMask2 |= 2 == 0) || true)) ||

((((intBitMask2 |= 4 == 0) || true) &&

(list.isEmpty())) &&

((intBitMask2 |= 8 == 0) || true)))) &&

(counter1.add(intBitMask1) || true)) ||

(counter1.add(intBitMask1)) && false))

The whole boolean expression will be instrumented using function i (see equation (4)).

The terms S, U and V are replaced by INITIAL, STORE-T and STORE-F. So the

semantic is not changed.

But what is this instrumentation doing? The INITIAL is needed to reset the bit mask to

zero before starting to measure the evaluations of the basic boolean terms. The STORE-?

method calls are needed to store the bit mask for every time, the whole expression has

been evaluated. And only one of the STORE-? methods is evaluated.

Is the whole (expression) true, than the STORE-T is evaluated, as a result of the &&

operator. This evaluation does not change the semantic and the expression is true again.

For this reason the STORE-F is not evaluated, because of the short circuit semantic of

the || operator.

Is the whole (expression) false, than the STORE-T is not evaluated, because of the short

circuit semantic of the && operator. But in this case the STORE-F is evaluated. For

being false, the STORE-F causes the whole expression to be evaluated to false.

So in each case of the evaluation of (expression), only one STORE-? method is called.

by Christoph Müller

CodeCover - Design 49

B Coverage log file specification

B.1 General description

The coverage log file contains all information of a test session. These are:

• the names of the test cases ≥ 1

• sections for different source files within a test case

• ID of a Coverable item and a counter value

The coverage log file is no XML file, cause this would be too much overhead. This file

is a plain text file with a specific grammar. This grammar is presented in the following,

using the ”Extended Backus–Naur form” as a notation. Some production use Unicode5

code points and ranges to define the valid characters.

The nonterminal EOL is standing for end of line and can be CR (\r), NL (\n) or CRNL

(\r\n). The Literal "EOF" is standing for end of file. The nonterminal NotEscaped-

Character is standing for any character of the character encoding, that is no Escaped-

Character and no control character.

Nevertheless, the coverage log file can use any character encoding the java. nio.

Charset supports (see Supported Encodings6).

B.2 EBNF grammar

CoverageLogFile = Comment TestCase {Comment | TestCase} {EOL} "EOF";

Comment = {CommentLine};

CommentLine = "//" ExtendedCharacter* EOL;

TestCase = TestSessionContainer StartTestCase [Section] EndTestCase;

StartTestCase = "START_TEST_CASE" " " TestCaseName [" " TimeStamp]

[" " TestCaseComment] EOL;

5http://www.unicode.org/
6http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

http://www.unicode.org/
java.nio.Charset
java.nio.Charset
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html
http://www.unicode.org/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

CodeCover - Design 50

TestCaseName = StringLiteral;

TimeStamp = IntegerLiteral;

TestCaseComment = StringLiteral;

EndTestCase = "END_TEST_CASE" " " TestCaseName [" " TimeStamp]

[" " TestCaseComment] EOL;

TestSessionContainer = "TEST_SESSION_CONTAINER" " "

TestSessionContainerUID EOL;

TestSessionContainerUID = StringLiteral;

Section = (NamedSection {NamedSection}) | UnnamedSection;

NamedSection = StartSection Counter*;

StartSection = "START_SECTION" " " SectionName EOL;

SectionName = StringLiteral;

UnnamedSection = Counter Counter*;

Counter = CounterID " " IntegerLiteral EOL;

CounterID = Character Character* IntegerLiteral {"-" IntegerLiteral};

IntegerLiteral = Digit Digit*;

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

StringLiteral = ’"’ {ExtendedCharacter} ’"’;

Character = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |

"j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" |

"B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |

"K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" |

"T" | "U" | "V" | "W" | "X" | "Y" | "Z";

ExtendedCharacter = Digit | Character | EscapedCharacter |

NotEscapedCharacter;

EscapedCharacter = "\n" | "\t" | "\b" | "\r" | "\f" | "\\" | ’\"’ |

"\’";

NotEscapedCharacter = "U+0020" | "U+0021" | "U+0023" .. "U+0026" |

"U+0028" .. "U+005B" | "U+005D" .. "U+10FFFF";

CodeCover- Design 51

EOL = "U+000D" | "U+000A" | "U+000D" "U+000A";

CodeCover - Design 52

B.3 Example

// ///////////////////////////////

// Start Session

// 18.05.2007 19:54:52.797

// ///////////////////////////////

// 18.05.2007 19:36:17.704

TEST_SESSION_CONTAINER "4f97f9b3-9284-4d36-817b-a4bda7714540"

START_TEST_CASE "My Name is \"Test Case 1\"" 1179509777704

START_SECTION "org.codecover.CodeExample"

S2 1

S4 1

C1-1010 2

C1-1100 1

C2-10 2

C2-11 40

C3-10 2

C3-11 38

L1-2 1

L4-0 15

L4-1 8

L4-2 221

END_TEST_CASE "My Name is \"Test Case 1\"" 1179509778775

// 18.05.2007 19:36:18.775

TEST_SESSION_CONTAINER "4f97f9b3-9284-4d36-817b-a4bda7714540"

START_TEST_CASE "Second Class"

START_SECTION "org.codecover.CodeExample"

S20 1

S21 1

START_SECTION "org.codecover.SecondClassOfFile"

C1-10 1

C1-11 2

C2-10 1

C3-10 1

C6-11 1

C7-11 1

C8-1111 1

C21-10101010101010101010101010101010 30

C21-11101110111000000000000000000000 1

C22-1010101010101010101010101010101011 30

C22-1110000000000000000000000000000000 1

CodeCover- Design 53

L4-2 1

END_TEST_CASE "Second Class"

	Introduction
	Project overview
	About this document
	Addressed audience
	Authors
	Notation
	Identifiers

	General overview
	Process chain
	Adding support for new programming languages

	Component overview
	Data model
	MetaDataObject
	MetaData
	CoverableItem
	Locatable
	LocationList
	Location
	SourceFile
	BooleanResult
	BooleanAssignment
	BooleanTerm
	BasicBooleanTerm
	OperatorTerm
	BooleanOperator
	RootTerm
	Statement
	BasicStatement
	ComplexStatement
	ConditionalStatement
	Branch
	LoopingStatement
	StatementSequence
	HierarchyLevel
	HierarchyLevelType
	Example

	Instrumentation
	Overview
	Instrumentation approach
	Statement coverage
	Branch coverage
	Condition coverage
	Loop coverage

	Metrics
	Report
	Programming language independency
	Natural language independency
	Template format
	Extensibility
	Hierarchical HTML Report
	Structure
	Generation
	Template format

	Single-file HTML Report
	Structure
	Generation
	Template format

	Batch
	Eclipse
	Data management
	Terminology
	TSContainerManager
	Storing the test session containers
	Active test session container
	Active test cases
	Listeners
	Saving and loading

	Build and Run
	Building the instrumented SUT
	Running the instrumented SUT
	Post-execution actions

	Annotation
	Attaching the model
	The annotation model
	Layout of annotations

	Package overview

	List of Figures
	Formal Proof Of Conditional Coverage Instrumentation
	Java Language Specification
	Predefinitions
	Consideration Of The Instrumentation I
	Consideration Of The Instrumentation II

	Coverage log file specification
	General description
	EBNF grammar
	Example

